当前位置: 首页> 财经> 产业 > 微信公众号推广目的_东营百姓网_seo优化网站技术排名百度推广_网络公司品牌推广

微信公众号推广目的_东营百姓网_seo优化网站技术排名百度推广_网络公司品牌推广

时间:2025/7/27 14:01:50来源:https://blog.csdn.net/u011939633/article/details/144592001 浏览次数:2次
微信公众号推广目的_东营百姓网_seo优化网站技术排名百度推广_网络公司品牌推广
  1. 双塔模型 (Siamese Networks)
    1. 论文:"Learning Deep Structured Semantic Models for Web Search using Clickthrough Data"
      1. 作者与时间:Huang et al., 2013
      2. 论文贡献:提出了DSSM(Deep Structured Semantic Model),利用Siamese结构结合点击数据训练深度语义模型,对文本进行高效编码和匹配。
      3.  论文链接:论文

  2. 预训练模型 (Pre-trained Language Models)
    1. 论文:"BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
      1. 作者: Devlin et al., 2018
      2. 贡献: BERT通过双向Transformer捕捉上下文语义,是目前许多语义匹配任务的基准模型。
      3. 论文链接:论文
    2. 论文:"Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks"
      1. 作者: Reimers and Gurevych, 2019
      2. 贡献: 通过Siamese网络结构改进BERT在句子相似度任务上的性能,并提升推理效率。
      3. 论文链接:论文
  3. 生成式模型在语义匹配中的应用
    1. 论文:"T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"
      1. 作者:Raffel et al., 2020
      2. 贡献: T5模型将语义匹配任务转换为生成问题,展示了通用生成式模型在匹配任务上的优势。
      3. 论文链接:论文
  4. 对比学习
    1. 论文:"SimCSE: Simple Contrastive Learning of Sentence Embeddings"
      1. 作者:Tianyu Gao et al., 2021
      2. 贡献:
        1. Proposed a method for leveraging BERT in a contrastive learning framework to improve sentence embeddings.
        2. In the unsupervised setup, SimCSE generates positive pairs by using the same sentence twice with random dropout as augmentation.
        3. In the supervised setup, labeled sentence pairs are used as positives, while other pairs in the batch serve as negatives.
        4. SimCSE achieved state-of-the-art results on multiple semantic textual similarity benchmarks.
      3. 论文链接:论文
    2. 论文:"ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation"
      1. 作者:Yue Zhang et al., 2021
      2. 贡献:
        1. Proposed using BERT in a contrastive learning framework with a focus on augmentation strategies to create diverse positive pairs.
        2. Strategies include token shuffling, cutoff, and back-translation to enrich positive samples.
        3. Demonstrated that augmentations can significantly improve sentence representation quality.
      3. 论文链接:论文
关键字:微信公众号推广目的_东营百姓网_seo优化网站技术排名百度推广_网络公司品牌推广

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: