当前位置: 首页> 健康> 美食 > 贵阳app下载_国际贸易网络营销_网络代理app_做运营的具体做什么

贵阳app下载_国际贸易网络营销_网络代理app_做运营的具体做什么

时间:2025/7/11 18:22:15来源:https://blog.csdn.net/qq_53665413/article/details/146658099 浏览次数:0次
贵阳app下载_国际贸易网络营销_网络代理app_做运营的具体做什么

摘要

算术优化算法(Arithmetic Optimization Algorithm, AOA)是一种新颖的群体智能优化算法,灵感来源于加、减、乘、除四种基本算术运算。在优化过程中,AOA 通过乘除操作实现全局探索,通过加减操作强化局部开发,兼顾了算法的全局搜索能力和局部收敛速度。本文系统介绍了 AOA 的核心机制、数学建模,并提供完整的 MATLAB 代码,包含详细中文注释,适合用于科学研究、函数测试与工程优化等场景。

一、算法原理详解

1.1 AOA 设计思想

AOA 将群体智能算法的搜索过程类比为一组算术计算,个体的位置更新由四种算术行为控制:

  • 加法 & 减法 → 小范围微调 → 强化开发能力
  • 乘法 & 除法 → 大范围变动 → 增强探索能力

整个搜索行为在不同阶段由控制因子逐步转变为开发导向,提升全局收敛性能。

1.2 核心数学模型与公式

(1)加速函数 MOA(Modulation of Arithmetic)

用于动态调节算术行为执行概率。其数学形式为:

MOA = MOA_{\text{min}} + \frac{C_{\text{Iter}}}{M_{\text{Iter}}} \cdot (MOA_{\text{max}} - MOA_{\text{min}})

(2)概率比 MOP(Math Optimizer Probability)

用于控制乘除(探索)和加减(开发)的选择:

MOP = 1 - \left( \frac{C_{\text{Iter}}^{1/\alpha}}{M_{\text{Iter}}^{1/\alpha}} \right)

α:指数控制因子,一般取值为 5

(3)位置更新策略

探索阶段(乘除)公式:

X_{i,j}^{t+1} = \begin{cases} \frac{Best_j}{MOP + \varepsilon} \cdot \left( (UB - LB) \cdot \mu + LB \right), & \text{if } r_2 > 0.5 \\ Best_j \cdot MOP \cdot \left( (UB - LB) \cdot \mu + LB \right), & \text{otherwise} \end{cases}

开发阶段(加减)公式:

X_{i,j}^{t+1} = \begin{cases} Best_j - MOP \cdot ((UB - LB) \cdot \mu + LB), & \text{if } r_3 > 0.5 \\ Best_j + MOP \cdot ((UB - LB) \cdot \mu + LB), & \text{otherwise} \end{cases}

二、AOA 完整 MATLAB 实现

function [Best_FF,Best_P,Conv_curve]=AOA(N,M_Iter,LB,UB,Dim,F_obj)
% 算术优化算法 AOA 实现
% N         :种群大小
% M_Iter    :最大迭代次数
% LB, UB    :变量上下界
% Dim       :问题维度
% F_obj     :目标函数句柄% 初始化最优解记录
Best_P = zeros(1,Dim);
Best_FF = inf;
Conv_curve = zeros(1,M_Iter); % 收敛曲线记录% 初始化种群
X = initialization(N,Dim,UB,LB);
Xnew = X;Ffun = zeros(1,N);      % 当前适应度值
Ffun_new = zeros(1,N);  % 更新适应度值% 参数设定
MOP_Max = 1;
MOP_Min = 0.2;
Alpha = 5;      % 控制 MOP 的下降曲率
Mu = 0.499;     % 缩放系数% 初始适应度评估
for i = 1:NFfun(i) = F_obj(X(i,:));if Ffun(i) < Best_FFBest_FF = Ffun(i);Best_P = X(i,:);end
end% 主迭代过程
for C_Iter = 1:M_Iter% 更新加速函数和概率因子MOP = 1 - ((C_Iter)^(1/Alpha) / (M_Iter)^(1/Alpha));MOA = MOP_Min + C_Iter*((MOP_Max - MOP_Min)/M_Iter);for i = 1:Nfor j = 1:Dimr1 = rand();if size(LB,2) == 1% 所有变量统一上下界base = (UB - LB)*Mu + LB;if r1 < MOAif rand() > 0.5Xnew(i,j) = Best_P(j)/(MOP+eps) * base;elseXnew(i,j) = Best_P(j)*MOP * base;endelseif rand() > 0.5Xnew(i,j) = Best_P(j) - MOP * base;elseXnew(i,j) = Best_P(j) + MOP * base;endendelse% 每个变量单独上下界base = (UB(j) - LB(j))*Mu + LB(j);if r1 < MOAif rand() > 0.5Xnew(i,j) = Best_P(j)/(MOP+eps) * base;elseXnew(i,j) = Best_P(j)*MOP * base;endelseif rand() > 0.5Xnew(i,j) = Best_P(j) - MOP * base;elseXnew(i,j) = Best_P(j) + MOP * base;endendendend% 边界处理Xnew(i,:) = min(max(Xnew(i,:), LB), UB);% 适应度评估并更新个体Ffun_new(i) = F_obj(Xnew(i,:));if Ffun_new(i) < Ffun(i)X(i,:) = Xnew(i,:);Ffun(i) = Ffun_new(i);end% 更新全局最优if Ffun(i) < Best_FFBest_FF = Ffun(i);Best_P = X(i,:);endend% 记录收敛曲线Conv_curve(C_Iter) = Best_FF;
end
end%% 初始化函数
function X = initialization(N,Dim,UB,LB)
B_no = size(UB,2);
if B_no == 1X = rand(N,Dim).*(UB-LB)+LB;
elsefor i = 1:DimX(:,i) = rand(N,1).*(UB(i)-LB(i))+LB(i);end
end
end

三、总结

算术优化算法(AOA)以基本的加、减、乘、除行为为核心设计灵感,通过引入概率控制函数(MOP)与加速调节因子(MOA),实现了从全局搜索到局部收敛的自然过渡。相比传统元启发式方法,AOA 结构简洁、易于实现且具有优越的全局优化能力,非常适合函数测试、工程建模和科学研究中的参数优化任务。本文详细阐述了其工作机制、数学模型及 MATLAB 实现,适合用于学术论文实验支撑、优化算法框架扩展等应用。

关键字:贵阳app下载_国际贸易网络营销_网络代理app_做运营的具体做什么

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: