当前位置: 首页> 教育> 就业 > ppt免费下载雷锋网站_网页设计素材主题_seo优化sem推广_百度收录查询入口

ppt免费下载雷锋网站_网页设计素材主题_seo优化sem推广_百度收录查询入口

时间:2025/7/11 11:04:50来源:https://blog.csdn.net/qq_39400324/article/details/146119991 浏览次数:0次
ppt免费下载雷锋网站_网页设计素材主题_seo优化sem推广_百度收录查询入口

 给定数据矩阵X,如何求其质心、中心化数据、标准化数据、格拉姆矩阵、协方差矩阵、相关系数矩阵。
  设数据矩阵 X X X是一个 n × p n\times p n×p的矩阵,其中 n n n是样本数量, p p p是变量数量, X = ( x i j ) X = (x_{ij}) X=(xij) i = 1 , 2 , ⋯ , n i = 1,2,\cdots,n i=1,2,,n j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p

1. 质心 X ˉ \bar{X} Xˉ

  质心是数据矩阵 X X X每一列的均值所构成的向量。对于第 j j j列,其均值 x ˉ j = 1 n ∑ i = 1 n x i j \bar{x}_j=\frac{1}{n}\sum_{i = 1}^{n}x_{ij} xˉj=n1i=1nxij j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p。所以质心向量 X ˉ = ( x ˉ 1 , x ˉ 2 , ⋯ , x ˉ p ) \bar{X}=(\bar{x}_1,\bar{x}_2,\cdots,\bar{x}_p) Xˉ=(xˉ1,xˉ2,,xˉp)

2. 中心化数据 X c X_c Xc

  中心化是将数据矩阵X的每一个样本点减去其质心。中心化后的数据矩阵 X c X_c Xc的元素 x i j c = x i j − x ˉ j x_{ij}^c=x_{ij}-\bar{x}_j xijc=xijxˉj i = 1 , 2 , ⋯ , n i = 1,2,\cdots,n i=1,2,,n j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p

3. 标准化数据 X s X_s Xs

  • 首先计算每一列的标准差 s j = 1 n − 1 ∑ i = 1 n ( x i j − x ˉ j ) 2 s_j=\sqrt{\frac{1}{n - 1}\sum_{i = 1}^{n}(x_{ij}-\bar{x}_j)^2} sj=n11i=1n(xijxˉj)2 j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p
  • 标准化后的数据矩阵 X s X_s Xs的元素 x i j s = x i j − x ˉ j s j x_{ij}^s=\frac{x_{ij}-\bar{x}_j}{s_j} xijs=sjxijxˉj i = 1 , 2 , ⋯ , n i = 1,2,\cdots,n i=1,2,,n j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p
    (减均值、除方差)

4.格拉姆矩阵 G G G

  格拉姆矩阵 G G G的元素 g i j = X T X g_{ij}=X^T X gij=XTX,即 g i j = ∑ k = 1 n x k i x k j g_{ij}=\sum_{k = 1}^{n}x_{ki}x_{kj} gij=k=1nxkixkj i = 1 , 2 , ⋯ , p i = 1,2,\cdots,p i=1,2,,p j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p
(每一个元素,都是 X X X中两个向量的内积)

5.协方差矩阵 C C C

  • 协方差矩阵C可以通过中心化后的数据矩阵 X c X_c Xc来计算, C = 1 n − 1 X c T X c C=\frac{1}{n - 1}X_c^T X_c C=n11XcTXc
  • 其元素 c i j = 1 n − 1 ∑ k = 1 n ( x k i − x ˉ i ) ( x k j − x ˉ j ) c_{ij}=\frac{1}{n - 1}\sum_{k = 1}^{n}(x_{ki}-\bar{x}_i)(x_{kj}-\bar{x}_j) cij=n11k=1n(xkixˉi)(xkjxˉj) i = 1 , 2 , ⋯ , p i = 1,2,\cdots,p i=1,2,,p j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p

6.相关系数矩阵 R R R

  • 可以由标准化后的数据矩阵 X s X_s Xs来计算相关系数矩阵R, R = 1 n − 1 X s T X s R=\frac{1}{n - 1}X_s^T X_s R=n11XsTXs

  • 也可以根据协方差矩阵C计算, r i j = c i j c i i c j j r_{ij}=\frac{c_{ij}}{\sqrt{c_{ii}c_{jj}}} rij=ciicjj cij i = 1 , 2 , ⋯ , p i = 1,2,\cdots,p i=1,2,,p j = 1 , 2 , ⋯ , p j = 1,2,\cdots,p j=1,2,,p,其中 r i j r_{ij} rij是相关系数矩阵R的元素

python实现

import numpy as npdef calculate_statistics(X):# 质心centroid=np.mean(X,axis=0)# 中心化数据X_cX_centered=X-centroid# 标准化数据X_sstd_dev=np.std(X,axis=0,ddof=1)# 格拉姆矩阵Ggram_matrix=np.dot(X.T,X)# 协方差矩阵Ccov_matrix=np.cov(X,rowvar=False)# 相关系数矩阵Rcorr_matrix=np.corrcoef(X,rowvar=False)return centroid, X_centered, std_dev, gram_matrix, cov_matrix, corr_matrix# Test the function
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
centroid, X_centered, std_dev, gram_matrix, cov_matrix, corr_matrix = calculate_statistics(X)print("Centroid:", centroid)
print("Centered data:", X_centered)
print("Standard deviation:", std_dev)
print("Gram matrix:", gram_matrix)
print("Covariance matrix:", cov_matrix)
print("Correlation matrix:", corr_matrix)
Centroid: [4. 5. 6.]
Centered data: [[-3. -3. -3.][ 0.  0.  0.][ 3.  3.  3.]]
Standard deviation: [3. 3. 3.]
Gram matrix: [[ 66  78  90][ 78  93 108][ 90 108 126]]
Covariance matrix: [[9. 9. 9.][9. 9. 9.][9. 9. 9.]]
Correlation matrix: [[1. 1. 1.][1. 1. 1.][1. 1. 1.]]
关键字:ppt免费下载雷锋网站_网页设计素材主题_seo优化sem推广_百度收录查询入口

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: