%%%ResearchDiary-Entry%%%Template by MikhailKlassen,April2013%%%
\documentclass[11pt,letterpaper]{article}\newcommand{\workingDate}{\textsc{\today}}
\newcommand{\userName}{GuYubBo}
\newcommand{\institution}{TshinghuaUniversity}
\usepackage{researchdiary_png}%To add your univeristy logo tothe upper right, simply
% upload a file named "logo.png" using the files menu above.\begin{document}
\univlogo\title{ResearchDiary}{\Huge \today}\\[5mm]\textit{This is the research journal of GuYubo, an undergraduate. I dream of becoming a scientist and contributing tohuman civilization.}
\section*{Estimate the total number of taxis in a city}
\subsection*{Background}People randomly see car numbers on city streets, and taxi license plate numbers are issued sequentially from a certain number. We consider estimating the total number of taxis by noting down license plate numbers.
\subsection*{Assumptions}
\begin{enumerate}\item Each number in the sample has an equal sampling probability.\item The data follows some existing distributions.
\end{enumerate}\subsection*{Model- building}Taxi license plate numbers start from 0001 and are issued sequentially. Randomly select \(n\) numbers toform a sample \(\{x_1, x_2, \cdots, x_n\}\) and sort it in ascending order. Let \(x\) be the terminal number, which is also the total number of taxis.\subsubsection*{Model1-MeanValueModel}
\begin{enumerate}\item SampleMean: \(\bar{x}=\frac{1}{n}\sum_{i =1}^{n}x_i\).\item PopulationMean: \(\overline{X}=\frac{1+ x}{2}\).\item EstimationFormula:Let \(\overline{X}=\bar{x}\), then \(x =2\bar{x}-1\).
\end{enumerate}
\begin{align*}
\frac{1+ x}{2}&=\bar{x}\\
1+ x&=2\bar{x}\\
x&=2\bar{x}-1
\end{align*}\subsubsection*{Model2-MedianModel}
\begin{enumerate}\item SampleMedian: \(\tilde{x}\).\item PopulationMedian: \(\widetilde{X}=\frac{x +1}{2}\).\item EstimationFormula:Let \(\widetilde{X}=\tilde{x}\), then \(x =2\tilde{x}-1\).
\end{enumerate}\begin{align*}
\frac{x +1}{2}&=\tilde{x}\\
x +1&=2\tilde{x}\\
x&=2\tilde{x}-1
\end{align*}\subsubsection*{Model3-SymmetricInterval at BothEndsModel}
\begin{enumerate}\item SampleInterval:Intervals are \(x_1 -1\) and \(x - x_n\).\item SymmetricAssumption: \(x - x_n = x_1 -1\).\item EstimationFormula:From \(x - x_n = x_1 -1\), we get \(x = x_n + x_1 -1\).
\end{enumerate}
\begin{align*}
x - x_n &= x_1 -1\\
x&=x_n + x_1 -1
\end{align*}\subsubsection*{Model4-AverageIntervalModel}
\begin{enumerate}\item SampleIntervalCalculation:Arrange \(1\) and the sample as \(\{1, x_1, x_2, \cdots, x_n\}\).The average interval \(\bar{d}=\frac{1}{n}[(x_1 -1)+\sum_{i =2}^{n}(x_i - x_{i -1}-1)]=\frac{1}{n}(x_n -1)\), estimating \(x - x_n\).\item EstimationFormula:Let \(x - x_n=\frac{1}{n}(x_n -1)\), then \(x=(1+ \frac{1}{n})x_n -1\).
\end{enumerate}
\begin{align*}
x - x_n&=\frac{1}{n}(x_n -1)\\
x&=x_n+\frac{1}{n}(x_n -1)\\
x&=(1+ \frac{1}{n})x_n -1
\end{align*}\subsubsection*{Model5-IntervalEqualDivisionModel}
\begin{enumerate}\item IntervalDivision:Divide \([1, x]\) into \(n\) equal parts,withsub- interval length \(l = \frac{x -1}{n}\).\item SamplePositionAssumption:Each \(x_i\) is at the sub - interval midpoint.\item IntervalDerivation: \(x - x_n=\frac{x -1}{2n}\).\item EstimationFormula:From \(x - x_n=\frac{x -1}{2n}\), we have:
\end{enumerate}
\begin{align*}2n(x - x_n)&=x -1\\
2nx-2nx_n&=x -1\\
2nx-x&=2nx_n -1\\
x(2n -1)&=2nx_n -1\\
x&=(1+\frac{1}{2n -1})(x_n-\frac{1}{2n})
\end{align*}
\end{document}