如果得到的是一组样本在两个算法上的一次预测结果,其中每个样本都被赋予了一个为正样本的概率(例如,通过逻辑回归或朴素贝叶斯分类器得到的概率估计),那么可以通过改变不同的阈值点来利用这些预测结果画出PR曲线。
如果得到的是一组样本在两个算法上的一次预测结果,其中输出结果是每个样本的类别(例如决策树、支持向量机、k近邻算法),只能得到两个(R,P)点,无法直接画出完整的PR曲线,只能通过计算该情况下的fβ度量来衡量哪个算法好。
如果得到的是一组样本在两个算法上的一次预测结果,其中每个样本都被赋予了一个为正样本的概率(例如,通过逻辑回归或朴素贝叶斯分类器得到的概率估计),那么可以通过改变不同的阈值点来利用这些预测结果画出PR曲线。
如果得到的是一组样本在两个算法上的一次预测结果,其中输出结果是每个样本的类别(例如决策树、支持向量机、k近邻算法),只能得到两个(R,P)点,无法直接画出完整的PR曲线,只能通过计算该情况下的fβ度量来衡量哪个算法好。
版权声明:
本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。
我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com