当前位置: 首页> 房产> 建材 > 小程序免费开发制作_app免费下载网站地址进入_seo完整教程视频教程_推广普通话标语

小程序免费开发制作_app免费下载网站地址进入_seo完整教程视频教程_推广普通话标语

时间:2025/7/18 23:11:14来源:https://blog.csdn.net/weixin_46623488/article/details/146016063 浏览次数:0次
小程序免费开发制作_app免费下载网站地址进入_seo完整教程视频教程_推广普通话标语

title: “[流行病学] Melodi Presto因果关联工具”
date: 2022-12-08
lastmod: 2022-12-08
draft: false
tags: [“流行病学”,“因果关联工具”]
toc: true
autoCollapseToc: true

阅读介绍

Melodi-Presto: A fast and agile tool to explore semantic triples derived from biomedical literature1

triples: subject–predicate–object triple

SemMedDB 大型开放式知识库

使用入口

  • 🚩在线工具 Web Application

  • API

  • Jupyter Notebooks

git 下载到json在提取

curl -X POST 'https://melodi-presto.mrcieu.ac.uk/api/overlap/' -H 'accept: application/json' -H 'Content-Type: application/json' -d '{ "x": [ "diabetes " ], "y": [ "coronary heart disease" ]}' > 1.json

使用示例

X: KRAS 
Y: lung cancer

输入的专业术语应该在Mesh先确定???

文章复现

doi: 10.1093/ije/dyab2032

{{< note >}} 1. 部分内容已经改变 2. Object的挑选精确到chronic 3. Predicate的挑选先无限制 4. Subject的挑选去掉了CRP,但是论文有纳入 5. OR的计算已经去掉? 6. gtf基因和[Uniprot蛋白名库](https://www.uniprot.org/uniprotkb?facets=model_organism%3A9606&query=reviewed%3Atrue)删掉 7. +药物库? {{< /note >}}
library(openxlsx)
# read
df <- read.xlsx("chronic kidney disease.xlsx",sheet = 1,  colNames=TRUE,check.names=FALSE )str(df$Pval)
df$Pval <- as.numeric(df$Pval)
# P value < 0.005
df <- subset(df,df$Pval < 0.005 )# removed triples where the subject was a gene or protein
df$Subject <- tolower(df$Subject)
a=stringr::str_which(df$Subject,pattern = "gene|protein|receptor")
# [waring:delete the CRP in the paper]
df$Subject[a]
df <- df[-a,]# where the term “CAUSES” implies causality, 
#   the term “ASSOCIATED_WITH” implies association, 
#   and the term “COEXISTS_WITH” implies co-existence. 
table(df$Predicate)
df <- subset(df,df$Predicate=="CAUSES"|df$Predicate=="ASSOCIATED_WITH"|df$Predicate=="COEXISTS_WITH")# restricted to triples 
# where the object contained either “kidney” or “renal”
table(df$Object)
dplyr::count(df,forcats::fct_lump_n(Object,n=10))
# 
df$Object <- tolower(df$Object)
b=stringr::str_which(df$Object,pattern = "kidney|renal")
df$Object[b]
df <- df[b,]# removed2 
df$Subject
c=stringr::str_which(df$Subject,pattern = "\\|")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "factor")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "peptide")
df$Subject[c]
df <- df[-c,]# retained only unique risk factors (subjects) 
#    to avoid duplicates
df <- dplyr::arrange(df,desc(Count),Pval)
df <- df[!duplicated(df$Subject),]table(df$Count)
# df <- subset(df,df$Count>2)write.xlsx(df, file = "筛选4.xlsx", colNames = TRUE)# enrichment odds ratio
#  (a) count the number of these triples 
#  (b) the number of total triples matched to the query 
#  (c) the total number of these triples in the data base , 
#  (d) and the total number of triples in the database .# stats.fisher_exact([[a, b-a], [c, d-c]])library(openxlsx)
# read
df <- read.xlsx("chronic kidney disease.xlsx",sheet = 1,  colNames=TRUE,check.names=FALSE )str(df$Pval)
df$Pval <- as.numeric(df$Pval)
# P value < 0.005
df <- subset(df,df$Pval < 0.005 )# removed triples where the subject was a gene or protein
df$Subject <- tolower(df$Subject)
a=stringr::str_which(df$Subject,pattern = "gene|protein|receptor")
# [waring:delete the CRP in the paper]
df$Subject[a]
df <- df[-a,]# where the term “CAUSES” implies causality, 
#   the term “ASSOCIATED_WITH” implies association, 
#   and the term “COEXISTS_WITH” implies co-existence. 
table(df$Predicate)
df <- subset(df,df$Predicate=="CAUSES"|df$Predicate=="ASSOCIATED_WITH"|df$Predicate=="COEXISTS_WITH")# restricted to triples 
# where the object contained either “kidney” or “renal”
table(df$Object)
dplyr::count(df,forcats::fct_lump_n(Object,n=10))
# 
df$Object <- tolower(df$Object)
b=stringr::str_which(df$Object,pattern = "kidney|renal")
df$Object[b]
df <- df[b,]# removed2 
df$Subject
c=stringr::str_which(df$Subject,pattern = "\\|")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "factor")
df$Subject[c]
df <- df[-c,]
# 
df$Subject
c=stringr::str_which(df$Subject,pattern = "peptide")
df$Subject[c]
df <- df[-c,]# retained only unique risk factors (subjects) 
#    to avoid duplicates
df <- dplyr::arrange(df,desc(Count),Pval)
df <- df[!duplicated(df$Subject),]table(df$Count)
# df <- subset(df,df$Count>2)write.xlsx(df, file = "筛选4.xlsx", colNames = TRUE)# enrichment odds ratio
#  (a) count the number of these triples 
#  (b) the number of total triples matched to the query 
#  (c) the total number of these triples in the data base , 
#  (d) and the total number of triples in the database .# stats.fisher_exact([[a, b-a], [c, d-c]])

NHANES

注意事项, 参考文章复现


  1. doi: 10.1093/bioinformatics/btaa726 ↩︎

  2. Trans-ethnic Mendelian-randomization
    study reveals causal relationships between
    cardiometabolic factors and chronic kidney
    disease ↩︎

关键字:小程序免费开发制作_app免费下载网站地址进入_seo完整教程视频教程_推广普通话标语

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: