一、实验目的
1. 理解MIPS处理器指令格式及功能。
2. 掌握ori指令格式与功能。
3. 掌握ModelSim和ISE\Vivado工具软件。
4. 掌握基本的测试代码编写和FPGA开发板使用方法。
二、实验环境
1. 装有ModelSim和ISE\Vivado的计算机。
2. Sword\Basys3\EGo1实验系统。
三、实验原理
MIPS是一款作为上世纪80年代的推出处理器,在美国与我国许多著名高校都作为教学研究的处理器。本次实验以32位MIPS为例,通过设计基本的MIPS指令集,从而掌握现代处理器的设计原理与方法。
MIPS处理器的指令格式分为R型、I型和J型。R型为寄存器型,即两个源操作数和目的操作数都是寄存器性。I型为操作数含有立即数。而J型特指转移类型指令,如图1所示。
如图2所示,本次实验及其后续实验挑选部分MIPS处理器指令进行实现。以ori指令为例说明,其中rs为源操作数寄存器,imm为立即数型源操作数,由于是逻辑运算,所以imm按无符号数(零)扩展为32位数,运算结果存入rt目的操作数寄存器。
如图3所示为按照单指令周期设计MIPS处理器内部结构。所有控制信号及字段均标注出来。另外,每条指令周期都包含2个clk,即PC模块用1个clk,Regfile和DataMem模块用1个clk,也可以说是由2个时钟构成的指令流水线。
为了便于今后的扩展,将MIPS处理器在图3的基础上进行了分阶段设计,这样结构更清晰,也有利于流水线的设计。随着后续指令的不断添加,处理器内部结构设计也会进行相应的调整。
用Verilog HDL设计32位MIPS处理器ORI指令实现,参照图4的MIPS内部结构示意图,将设计的MIPS处理器改造为分阶段实现方案,注意每条指令周期平均只包含1个时钟周期。先编写基本实现代码,即能实现ORI指令的取指令和执行指令。
`include "define.v"
module IF(input wire clk,input wire rst,output reg ce,
output reg [31:0] pc
);always@(*)if(rst == `RstEnable)ce = `RomDisable;elsece = `RomEnable;always@(posedge clk)if(ce == `RomDisable)pc = `Zero;elsepc = pc + 4;
endmodule
`include "define.v"
module ID (input wire rst, input wire [31:0] inst,input wire [31:0] regaData_i,input wire [31:0] regbData_i,output reg [5:0] op,output reg [4:0] regaAddr,output reg [4:0] regbAddr, output reg [4:0] regcAddr, output reg [31:0] regaData,output reg [31:0] regbData,output reg regaRead,output reg regbRead,output reg regcWrite
);wire [5:0] inst_op = inst[31:26]; reg [31:0] imm;always@(*)if(rst == `RstEnable)beginop = `Nop;regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Invalid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = `Zero;imm = `Zero;endelse case(inst_op)`Inst_ori:beginop = `Or;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {16'h0, inst[15:0]};end`Inst_addi:beginop = `Add;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {{16{inst[15]}}, inst[15:0]};end`Inst_andi:beginop = `And;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {16'h0, inst[15:0]};end`Inst_xori:beginop = `Xor;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {16'h0, inst[15:0]};end`Inst_subi:beginop = `Sub;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {{16{inst[15]}}, inst[15:0]};end`Inst_lui:beginop = `Lui;regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = inst[20:16];imm = {inst[15:0],16'h0};end/*`Inst_lui:beginop = `Lui;regaRead = `Valid;regbRead = `Invalid;regcWrite = `Valid;regaAddr = inst[25:21];regbAddr = `Zero;regcAddr = inst[20:16];imm = {inst[15:0],16'h0};end*/default:beginop = `Nop;regaRead = `Invalid;regbRead = `Invalid;regcWrite = `Invalid;regaAddr = `Zero;regbAddr = `Zero;regcAddr = `Zero;imm = `Zero;endendcasealways@(*)if(rst == `RstEnable)regaData = `Zero;else if(regaRead == `Valid)regaData = regaData_i;elseregaData = imm;always@(*)if(rst == `RstEnable)regbData = `Zero; else if(regbRead == `Valid)regbData = regbData_i;elseregbData = imm;
endmodule
`include "define.v"
module EX(input wire rst,input wire [5:0] op, input wire [31:0] regaData,input wire [31:0] regbData,input wire regcWrite_i,input wire [4:0]regcAddr_i,output reg [31:0] regcData,output wire regcWrite,output wire [4:0] regcAddr
); always@(*)if(rst == `RstEnable)regcData = `Zero;elsebegincase(op)`Or:regcData = regaData | regbData;`Add:regcData = regaData + regbData;`And:regcData = regaData & regbData;`Xor:regcData = regaData ^ regbData;`Lui:regcData = regaData;/*`Lui:regcData = regaData | regbData;*/`Sub:regcData = regaData - regbData;default:regcData = `Zero;endcaseendassign regcWrite = regcWrite_i;assign regcAddr = regcAddr_i;
endmodule
`include "define.v"
module RegFile(input wire clk,input wire rst,input wire we,input wire [4:0] waddr,input wire [31:0] wdata,input wire regaRead,input wire regbRead,input wire [4:0] regaAddr,input wire [4:0] regbAddr,output reg [31:0] regaData,output reg [31:0] regbData
);reg [31:0] reg32 [31 : 0]; always@(*)if(rst == `RstEnable)regaData = `Zero;else if(regaAddr == `Zero)regaData = `Zero;elseregaData = reg32[regaAddr];always@(*)if(rst == `RstEnable) regbData = `Zero;else if(regbAddr == `Zero)regbData = `Zero;elseregbData = reg32[regbAddr];always@(posedge clk)if(rst != `RstEnable)if((we == `Valid) && (waddr != `Zero))reg32[waddr] = wdata;else ;
endmodule
`include "define.v"
module MIPS(input wire clk,input wire rst,input wire [31:0] instruction,output wire romCe,output wire [31:0] instAddr
);wire [31:0] regaData_regFile, regbData_regFile;wire [31:0] regaData_id, regbData_id; wire [31:0] regcData_ex;wire [5:0] op; wire regaRead, regbRead;wire [4:0] regaAddr, regbAddr;wire regcWrite_id, regcWrite_ex;wire [4:0] regcAddr_id, regcAddr_ex;IF if0(.clk(clk),.rst(rst),.ce(romCe), .pc(instAddr));ID id0(.rst(rst), .inst(instruction),.regaData_i(regaData_regFile),.regbData_i(regbData_regFile),.op(op),.regaData(regaData_id),.regbData(regbData_id),.regaRead(regaRead),.regbRead(regbRead),.regaAddr(regaAddr),.regbAddr(regbAddr),.regcWrite(regcWrite_id),.regcAddr(regcAddr_id));EX ex0(.rst(rst),.op(op), .regaData(regaData_id),.regbData(regbData_id),.regcWrite_i(regcWrite_id),.regcAddr_i(regcAddr_id),.regcData(regcData_ex),.regcWrite(regcWrite_ex),.regcAddr(regcAddr_ex)); RegFile regfile0(.clk(clk),.rst(rst),.we(regcWrite_ex),.waddr(regcAddr_ex),.wdata(regcData_ex),.regaRead(regaRead),.regbRead(regbRead),.regaAddr(regaAddr),.regbAddr(regbAddr),.regaData(regaData_regFile),.regbData(regbData_regFile));
endmodule
`include "define.v"
module InstMem(input wire ce,input wire [31:0] addr,output reg [31:0] data
);reg [31:0] instmem [1023 : 0]; always@(*) if(ce == `RomDisable)data = `Zero;elsedata = instmem[addr[11 : 2]]; initialbegininstmem [0] = 32'h34011100; //ori r1,r0,1100h r1--32'h0000 1100instmem [1] = 32'h34020020; //ori r2,r0,0020h r2--32'h0000 0020instmem [2] = 32'h3403ff00; //ori r3,r0,ff00h r3--32'h0000 ff00instmem [3] = 32'h3404ffff; //ori r4,r0,ffffh r4--32'h0000 ffffinstmem [4] = 32'h3005ffff; //andi r5,r0,ffff r5--32'h0000 0000instmem [5] = 32'h3806ffff; //xori r6,r0,ffff r6--32'h0000 ffffinstmem [6] = 32'h2007ffff; //addi r7,r0,ffff r7--32'hffff ffffinstmem [7] = 32'h3c081234; //lui r8,1234 r8--32'h1234 0000instmem [8] = 32'h35095679; //ori r9,r8,5678 r9--32'h1234 5679instmem [9] = 32'h212aa011; //addi r10,r9,a011 r10--32'h1233 f68ainstmem [10] = 32'h306b1111; //andi r11,r3,1111 r10--32'h0000 1100instmem [11] = 32'h254C1111; //subi r12,r10,1111 r12--32'h1234 e579end
endmodule
module SoC(input wire clk,input wire rst
);wire [31:0] instAddr;wire [31:0] instruction;wire romCe; MIPS mips0(.clk(clk),.rst(rst),.instruction(instruction),.instAddr(instAddr),.romCe(romCe)); InstMem instrom0(.ce(romCe),.addr(instAddr),.data(instruction));
endmodule
`include "define.v"
module soc_tb;reg clk;reg rst;initialbeginclk = 0;rst = `RstEnable;#100rst = `RstDisable;#10000 $stop; endalways #10 clk = ~ clk;SoC soc0(.clk(clk), .rst(rst));
endmodule
在完成基本实验的基础上,如图4所示,将ANDI, XOI, ADDI,SUBI和LUI等指令添加进去,然后进行设计实现和验证结果。