文章目录
- 1 实验任务
- 2 系统框图
- 3 硬件设计
- 4 软件设计
- 4.1 dynclk_api.h文件
- 4.2 math_compat.h文件
- 4.3 dynclk_api.c文件
- 4.4 main.c文件
- 4.5 Digilent公司动态时钟API
- 4.5.1 clk_wiz.h文件
- 4.5.2 clk_wiz.c文件
1 实验任务
参见14.1。
2 系统框图
参见14.1。
3 硬件设计
注意事项:基于14.1做如下改动
- 使能Clocking Wizard IP核的Dynamic Reconfig功能,并选择AXI4-Lite接口;
- 将Clocking Wizard IP核的AXI4-Lite接口通过AXI Interconnect连接到PS的M_AXI_GP接口。
特别说明:为什么不使用Digilent公司提供的axi_dynclk IP核(正点原子教程使用该IP),原因如下
- axi_dynclk IP核输出两个时钟,PXL_CLK_O和PXL_CLK_5X_O;
- PXL_CLK_5X_O由BUFIO驱动,PXL_CLK_O由BUFR驱动(5倍分频);
- PXL_CLK_O在本实验的Vivado工程中布线无法通过,提示路径太远,原因应该是BUFR是区域时钟缓冲器,能够驱动的资源有限,导致布线失败;
- 正点原子的教程使用axi_dynclk IP核编译可以通过,猜测原因可能是整个工程只使用一个时钟,即PS提供的FCLK_CLK0;
- 本实验的Vivado工程中使用三个时钟
- PS输出的FCLK_CLK0(50MHz),用于连接AXI4-Lite接口;
- PS输出的FCLK_CLK1(150MHz),用于连接AXI4接口;
- 板载时钟(50MHz)经Clocking Wizard IP核输出的视频像素时钟(148.5MHz)
- 尝试在IP Packager中对axi_dynclk IP核进行修改,使其只输出一个时钟,且该时钟由BUFG驱动,但是修改完成之后,在对IP进行重新封装时,Vivado工具总是闪退,多次尝试并重启电脑,依旧如此,故放弃。
4 软件设计
动态时钟的软件配置部分代码,我是让deepseek帮我生成的,我负责提需求,包括:
- pg065中关于通过AXI4-Lite接口动态配置时钟的步骤;
- 输出频率Fout的计算公式
- 计算公式中各个参数的取值范围,包括
- Fvco = 600MHz~1200MHz(和器件型号及等级有关)
- CLKFBOUT_MULT = 2.0 ~ 64.0(MMCM,小数部分以0.125步进)/1~64(PLL)
- DIVCLK_DIVIDE = 1 ~ 106(MMCM)/1~56(PLL)
- CLKOUT0_DIVIDE = 1.000 ~ 128.000(MMCM,小数部分以0.125步进)/1~128(PLL)
- 关键寄存器的说明,包括
- Software Reset Register (SRR),偏移地址0x00
- Status Register (SR),偏移地址0x04
- Clock Configuration Register 0,偏移地址0x200
- Clock Configuration Register 2,偏移地址0x208
- Clock Configuration Register 23,偏移地址0x25C
代码生成后,让deepseek形成xxx_api.c文件和xxx_api.h文件,使用很方便,只需提供输入时钟频率和期望的输出时钟频率(不能输出类似33.333MHz的时钟),效果非常好。
4.1 dynclk_api.h文件
代码如下所示:
/*****************************************************************************/#ifndef XCLK_WIZ_API_H
#define XCLK_WIZ_API_H/*****************************************************************************/#include "xparameters.h"
#include "xclk_wiz_hw.h"
#include "math_compat.h"/*****************************************************************************///
#define DEBUG 0// 寄存器基地址
#define XCLKWIZ_BASEADDR XPAR_CLK_WIZ_0_BASEADDR// VCO频率范围(MHz)
#define MIN_VCO_FREQ 600.0
#define MAX_VCO_FREQ 1200.0// 参数范围
#define MIN_CLKFBOUT_MULT 2
#define MAX_CLKFBOUT_MULT 64
#define MIN_DIVCLK_DIVIDE 1
#define MAX_DIVCLK_DIVIDE 106
#define MIN_CLKOUT0_DIVIDE 1
#define MAX_CLKOUT0_DIVIDE 128// 小数部分步进
#define FRAC_STEP 0.125
#define FRAC_SCALE 1000// 寄存器偏移量 (根据文档修正)
#define XCLKWIZ_SOFT_RESET_OFFSET 0x0 // Soft Reset Register
#define XCLKWIZ_STATUS_OFFSET 0x4 // Status Register
#define XCLKWIZ_CLK_CONFIG_00_OFFSET 0x200 // Clock Configuation Register 00
#define XCLKWIZ_CLK_CONFIG_02_OFFSET 0x208 // Clock Configuation Register 02
#define XCLKWIZ_CLK_CONFIG_23_OFFSET 0x25C // Clock Configuation Register 23// 寄存器值定义
/** To activate software reset, the value 0x0000_000A must be written to the register.*/
#define XCLKWIZ_RESET_VALUE 0xA
/** When '1' MMCM/PLL is Locked and ready for the reconfiguration. Status of this bit is '0' during the reconfiguration.*/
#define XCLKWIZ_STATUS_LOCKED_MASK 0x1// 错误代码
#define XCLK_WIZ_SUCCESS 0
#define XCLK_WIZ_ERROR_INVALID_PARAM -1
#define XCLK_WIZ_ERROR_RESET_FAILED -2
#define XCLK_WIZ_ERROR_LOCK_FAILED -3// 100ms计数值定义
#define COUNT_NUM_100MS (XPAR_CPU_CORTEXA9_0_CPU_CLK_FREQ_HZ / 10)/*****************************************************************************//*** @brief 配置时钟向导IP* @param input_freq 输入时钟频率(MHz)* @param output_freq 期望的输出时钟频率(MHz)* @return 成功返回XCLK_WIZ_SUCCESS,失败返回错误代码**/
int clk_wiz_configure(double input_freq, double output_freq);/*** @brief 复位时钟向导IP* @return 成功返回XCLK_WIZ_SUCCESS,失败返回错误代码**/
int clk_wiz_reset(void);/*** @brief 检查时钟向导是否锁定* @return 锁定返回1,未锁定返回0**/
int clk_wiz_is_locked(void);/*****************************************************************************/#endif // XCLK_WIZ_API_H/*****************************************************************************/
4.2 math_compat.h文件
代码如下所示
#ifndef MATH_COMPAT_H
#define MATH_COMPAT_H/*****************************************************************************/// 替代ceil函数实现
static inline double ceil(double x) {if (x >= 0.0) {int int_part = (int)x;return (x == (double)int_part) ? x : (double)(int_part + 1);}else {int int_part = (int)x;return (double)int_part;}
}/*****************************************************************************/// 替代floor函数实现
static inline double floor(double x) {if (x >= 0.0) {return (double)((int)x);}else {int int_part = (int)x;return (x == (double)int_part) ? x : (double)(int_part - 1);}
}/*****************************************************************************/// 替代fmax函数实现
static inline double fmax(double x, double y) {return (x > y) ? x : y;
}/*****************************************************************************/// 替代fmin函数实现
static inline double fmin(double x, double y) {return (x < y) ? x : y;
}/*****************************************************************************/#endif // MATH_COMPAT_H
4.3 dynclk_api.c文件
代码如下所示:
/*****************************************************************************/#include "dynclk_api.h"
#include "stdio.h"/*****************************************************************************/// 内部函数声明
static int calculate_pll_params(double input_freq, double output_freq, int *divclk_divide, double *clkfbout_mult, double *clkout0_divide);
static u32 build_reg0_value(int divclk_divide, double clkfbout_mult);
static u32 build_reg2_value(double clkout0_divide);
static int wait_for_lock(u32 timeout_us);/*****************************************************************************/int clk_wiz_is_locked(void) {//u32 status = XClk_Wiz_ReadReg(XCLKWIZ_BASEADDR, XCLKWIZ_STATUS_OFFSET);//return (status & XCLKWIZ_STATUS_LOCKED_MASK) ? 1 : 0;
}/*****************************************************************************/static int wait_for_lock(u32 timeout_count) {//while (timeout_count--) {if (clk_wiz_is_locked()) {return XCLK_WIZ_SUCCESS;}}//return XCLK_WIZ_ERROR_LOCK_FAILED;
}/*****************************************************************************/int clk_wiz_reset(void) {//
#if DEBUGprintf("2 - PLL Reset Start.\n");
#endif// 发送复位信号XClk_Wiz_WriteReg(XCLKWIZ_BASEADDR, XCLKWIZ_SOFT_RESET_OFFSET, XCLKWIZ_RESET_VALUE);// 检查复位是否完成
#if DEBUGprintf("\tWaiting for PLL lock...\n");
#endifif (wait_for_lock(COUNT_NUM_100MS) != XCLK_WIZ_SUCCESS) { // 100ms超时printf("\tError: PLL Lock Failed.\n");return XCLK_WIZ_ERROR_LOCK_FAILED;}//
#if DEBUGprintf("\tPLL Reset Completed.\n\n");
#endif//return XCLK_WIZ_SUCCESS;
}/*****************************************************************************/static int calculate_pll_params(double input_freq, double output_freq, int *divclk_divide, double *clkfbout_mult, double *clkout0_divide) {//double vco_freq;int found = 0;double min_vco = MIN_VCO_FREQ;double max_vco = MAX_VCO_FREQ;// 尝试不同的DIVCLK_DIVIDE值for (int d = MIN_DIVCLK_DIVIDE; d <= MAX_DIVCLK_DIVIDE && !found; d++) {// 计算可能的CLKFBOUT_MULT值范围double min_mult = min_vco / (input_freq / d);double max_mult = max_vco / (input_freq / d);// 确保在有效范围内 - 使用我们的fmax/fmin实现min_mult = (min_mult > MIN_CLKFBOUT_MULT) ? min_mult : MIN_CLKFBOUT_MULT;max_mult = (max_mult < MAX_CLKFBOUT_MULT) ? max_mult : MAX_CLKFBOUT_MULT;if (min_mult > max_mult) continue;// 计算整数部分范围int min_int = (int)min_mult;int max_int = (int)max_mult + 1;// 尝试CLKFBOUT_MULT值for (int m = min_int; m <= max_int && !found; m++) {// 尝试小数部分for (int f = 0; f <= 7; f++) { // 0.125步进(0-0.875)double mult = m + f * FRAC_STEP;// 检查是否在范围内if (mult < min_mult || mult > max_mult) continue;// 计算VCO频率vco_freq = (input_freq / d) * mult;// 计算所需的CLKOUT0_DIVIDEdouble divide = vco_freq / output_freq;// 检查CLKOUT0_DIVIDE是否在范围内if (divide < MIN_CLKOUT0_DIVIDE || divide > MAX_CLKOUT0_DIVIDE) continue;// 检查小数部分double fractional_part = divide - (int)divide;int valid_fraction = 0;// 检查小数部分是否是0.125的整数倍for (int i = 0; i <= 7; i++) {if ((fractional_part - i * FRAC_STEP) < 0.0001 &&(fractional_part - i * FRAC_STEP) > -0.0001) {valid_fraction = 1;break;}}if (!valid_fraction && fractional_part > 0.0001) continue;// 找到有效参数*divclk_divide = d;*clkfbout_mult = mult;*clkout0_divide = divide;found = 1;break;}}}//return found ? 0 : -1;
}/*****************************************************************************/static u32 build_reg0_value(int divclk_divide, double clkfbout_mult) {//u32 reg_value = 0;// 提取整数和小数部分int integer_part = (int)clkfbout_mult;double fractional_part = clkfbout_mult - integer_part;int fractional_value = (int)(fractional_part * FRAC_SCALE);// 构建寄存器值reg_value |= (divclk_divide & 0xFF); // Bits [7:0]reg_value |= (integer_part & 0xFF) << 8; // Bits [15:8]reg_value |= (fractional_value & 0x3FF) << 16; // Bits [25:16]//return reg_value;
}/*****************************************************************************/static u32 build_reg2_value(double clkout0_divide) {//u32 reg_value = 0;// 提取整数和小数部分int integer_part = (int)clkout0_divide;double fractional_part = clkout0_divide - integer_part;int fractional_value = (int)(fractional_part * FRAC_SCALE);// 构建寄存器值reg_value |= (integer_part & 0xFF); // Bits [7:0]reg_value |= (fractional_value & 0x3FF) << 8; // Bits [17:8]//return reg_value;
}/*****************************************************************************/int clk_wiz_configure(double input_freq, double output_freq) {//int divclk_divide;double clkfbout_mult, clkout0_divide;u32 reg0_value, reg2_value;// 参数检查if (input_freq <= 0 || output_freq <= 0) {printf("Error: Invalid Frequency Parameters.\n");return XCLK_WIZ_ERROR_INVALID_PARAM;}// 1. 计算PLL参数if (calculate_pll_params(input_freq, output_freq, &divclk_divide, &clkfbout_mult, &clkout0_divide) != 0) {printf("Error: Cannot Find Suitable PLL Parameters.\n");return XCLK_WIZ_ERROR_INVALID_PARAM;}#if DEBUGprintf("1 - Calculate FVCO Parameters:\n");printf("\tDIVCLK_DIVIDE: %d\n", divclk_divide);printf("\tCLKFBOUT_MULT: %.3f\n", clkfbout_mult);printf("\tCLKOUT0_DIVIDE: %.3f\n\n", clkout0_divide);
#endif// 2. 复位PLLif (clk_wiz_reset() != XCLK_WIZ_SUCCESS) {return XCLK_WIZ_ERROR_RESET_FAILED;}// 3. 构建寄存器值reg0_value = build_reg0_value(divclk_divide, clkfbout_mult);reg2_value = build_reg2_value(clkout0_divide);#if DEBUGprintf("3 - Build Clock Configuration Register Values:\n");printf("\tReg0 (0x%x): 0x%lx\n", XCLKWIZ_CLK_CONFIG_00_OFFSET, reg0_value);printf("\tReg2 (0x%x): 0x%lx\n\n", XCLKWIZ_CLK_CONFIG_02_OFFSET, reg2_value);
#endif// 4. 配置寄存器XClk_Wiz_WriteReg(XCLKWIZ_BASEADDR, XCLKWIZ_CLK_CONFIG_00_OFFSET, reg0_value);XClk_Wiz_WriteReg(XCLKWIZ_BASEADDR, XCLKWIZ_CLK_CONFIG_02_OFFSET, reg2_value);#if DEBUGprintf("4 - Write Clock Configuration Register Values.\n\n");
#endif// 5. 加载新配置XClk_Wiz_WriteReg(XCLKWIZ_BASEADDR, XCLKWIZ_CLK_CONFIG_23_OFFSET, 0x3);#if DEBUGprintf("5 - Load Clock Configuration Register Values.\n\n");
#endif// 6. 等待锁定
#if DEBUGprintf("6 - Waiting for PLL Lock...\n");
#endifif (wait_for_lock(COUNT_NUM_100MS) != XCLK_WIZ_SUCCESS) {printf("Error: PLL Lock Failed.\n");return XCLK_WIZ_ERROR_LOCK_FAILED;}#if DEBUGprintf("\tPLl Lock Succeeded.\n\n");
#endif//return XCLK_WIZ_SUCCESS;
}/*****************************************************************************/
4.4 main.c文件
代码如下所示:
/***************************** Include Files *********************************/
#include "stdio.h"
#include "xparameters.h"
#include "xstatus.h"
#include "xaxivdma.h"
#include "xil_cache.h"
#include "sleep.h"
#include "xtime_l.h"#include "dynclk/dynclk_api.h"
#include "vdma/vdma_api.h"
/************************** Constant Definitions *****************************/
#define VDMA_DEVICE_ID XPAR_AXIVDMA_0_DEVICE_ID
#define XCLK_WIZARD_DEVICE_ID XPAR_CLK_WIZ_0_DEVICE_ID#define IMAGE_WIDTH 1920
#define IMAGE_HEIGHT 1080#define MEMORY_BASEADDR XPAR_PS7_DDR_0_S_AXI_BASEADDR#define DEBUG 0
/**************************** Type Definitions *******************************//***************** Macros (Inline Functions) Definitions *********************//************************** Function Prototypes ******************************/
void GenPureColor(u8* DestAddr, u32 ImageWidth, u32 ImageHeight);
void GenColorBar(u8* DestAddr, u32 ImageWidth, u32 ImageHeight);
void PrintTimeStats(XTime start, XTime end, const char* label);
/************************** Variable Definitions *****************************/
XAxiVdma VdmaInst;int FrameBufferAddr = (MEMORY_BASEADDR + 0x02000000);
/*****************************************************************************/int main()
{//int Status;u8* VdmaBufferAddr = (u8*)FrameBufferAddr;
#if DEBUGXTime start_time;XTime end_time;
#endifint result;// 写入纯色图(用于确定RGB的字节位置)
#if 0GenPureColor(VdmaBufferAddr, (u32)IMAGE_WIDTH, (u32)IMAGE_HEIGHT);
#endif// 写入彩条图
#if 1#if DEBUGXTime_GetTime(&start_time);#endifprintf("Write colorbar to DDR.\n");GenColorBar(VdmaBufferAddr, (u32)IMAGE_WIDTH, (u32)IMAGE_HEIGHT);#if DEBUGXTime_GetTime(&end_time);#endif
#endif// 打印时间统计
#if DEBUGPrintTimeStats(start_time, end_time, "GenColorBar DDR Write");
#endif//Status = VdmaInit(&VdmaInst, VDMA_DEVICE_ID, IMAGE_WIDTH, IMAGE_HEIGHT, FrameBufferAddr, 0, 0);if (Status == XST_FAILURE) {printf("VDMA Initialization Failed.\n");}else {printf("VDMA Initialization Succeeded.\n");}//Status = VdmaReadOperation(VDMA_DEVICE_ID);if (Status == XST_FAILURE) {printf("VDMA Read Operation Failed.\n");}else {printf("VDMA Read Operation Succeeded.\n");}//while (1) {//result = clk_wiz_configure(50, 148.5);switch(result) {case XCLK_WIZ_SUCCESS:printf("PLL Configuration Completed.\n\n");break;case XCLK_WIZ_ERROR_INVALID_PARAM:printf("Error: Invalid Parameters Provided.\n\n");break;case XCLK_WIZ_ERROR_RESET_FAILED:printf("Error: PLL Reset Failed.\n\n");break;case XCLK_WIZ_ERROR_LOCK_FAILED:printf("Error: PLL Lock Failed.\n\n");break;default:printf("Error: Unknown Error Occurred.\n\n");}sleep(15);//result = clk_wiz_configure(50, 123.75);switch(result) {case XCLK_WIZ_SUCCESS:printf("PLL Configuration Completed.\n\n");break;case XCLK_WIZ_ERROR_INVALID_PARAM:printf("Error: Invalid Parameters Provided.\n\n");break;case XCLK_WIZ_ERROR_RESET_FAILED:printf("Error: PLL Reset Failed.\n\n");break;case XCLK_WIZ_ERROR_LOCK_FAILED:printf("Error: PLL Lock Failed.\n\n");break;default:printf("Error: Unknown Error Occurred.\n\n");}sleep(15);}//return 0;
}/*****************************************************************************/
void GenPureColor(u8* DestAddr, u32 ImageWidth, u32 ImageHeight)
{// 禁用缓存(如果目标内存是非缓存区域)Xil_DCacheDisable();for (u32 y = 0; y < ImageHeight; y++) {for (u32 x = 0; x < ImageWidth; x++) {// 计算当前像素的内存位置(3字节/像素)u32 PixelOffset = (y * ImageWidth + x) * 3;u8* PixelAddr = DestAddr + PixelOffset;// 写入RGB三个字节PixelAddr[0] = 0x00;PixelAddr[1] = 0x00;PixelAddr[2] = 0xff;}}// 如果需要,刷新缓存Xil_DCacheFlushRange((INTPTR)DestAddr, ImageWidth * ImageHeight * 3);//return;
}/*****************************************************************************/
void GenColorBar(u8* DestAddr, u32 ImageWidth, u32 ImageHeight)
{// 定义8种颜色(R, G, B顺序)const u8 color_bars[8][3] = {{0x00, 0x00, 0x00}, // 黑{0xff, 0xff, 0xff}, // 白{0xff, 0x00, 0x00}, // 绿{0x00, 0xff, 0x00}, // 蓝{0x00, 0x00, 0xff}, // 红{0xff, 0xff, 0x00}, // 青 = 绿+蓝{0xff, 0x00, 0xff}, // 黄 = 绿+红{0x00, 0xff, 0xff} // 紫 = 蓝+红};// 计算每个色条的宽度u32 BarWidth = ImageWidth / 8;// 禁用缓存(如果目标内存是非缓存区域)
#if 0Xil_DCacheDisable();
#endif#if 0// 按像素写入for (u32 y = 0; y < ImageHeight; y++) {for (u32 x = 0; x < ImageWidth; x++) {// 计算当前色条索引u32 BarIndex = x / BarWidth;// 计算当前像素的内存位置(3字节/像素)u32 PixelOffset = (y * ImageWidth + x) * 3;u8* PixelAddr = DestAddr + PixelOffset;// 写入RGB三个字节PixelAddr[0] = color_bars[BarIndex][0];PixelAddr[1] = color_bars[BarIndex][1];PixelAddr[2] = color_bars[BarIndex][2];}}
#endif#if 1// 按行写入(每次写入一行中的连续色块)for (u32 y = 0; y < ImageHeight; y++) {u8* line_addr = DestAddr + y * ImageWidth * 3;// 写入 8 个色块(每个色块宽度 BarWidth)for (u32 bar = 0; bar < 8; bar++) {// 计算当前色块的起始位置u8* bar_addr = line_addr + bar * BarWidth * 3;// 一次性写入整个色块(BarWidth 个像素)for (u32 x = 0; x < BarWidth; x++) {memcpy(bar_addr + x * 3, color_bars[bar], 3);}}}
#endif// 如果需要,刷新缓存Xil_DCacheFlushRange((INTPTR)DestAddr, ImageWidth * ImageHeight * 3);//return;
}
/*****************************************************************************/
void PrintTimeStats(XTime start, XTime end, const char* label)
{// 计算耗时(单位:时钟周期)XTime elapsed_cycles = end - start;// 转换为秒(假设计时器频率为XPAR_CPU_CORTEXA9_0_CPU_CLK_FREQ_HZ)float elapsed_sec = (float)elapsed_cycles / (float)XPAR_CPU_CORTEXA9_0_CPU_CLK_FREQ_HZ;// 打印结果printf("[Time Stats] %s:\n", label);printf(" Clock Cycles: %llu\n", elapsed_cycles);printf(" Time (s): %.6f\n", elapsed_sec);printf(" Time (ms): %.3f\n", elapsed_sec * 1000);
}
实测效果:每隔20s,重配置一次时钟频率,输出视频在1080p@50Hz和1080p@60Hz之间切换。
4.5 Digilent公司动态时钟API
4.5.1 clk_wiz.h文件
代码如下所示:
#ifndef CLK_WIZ_H_
#define CLK_WIZ_H_#include "xil_types.h"#define CLK_SR_OFFSET 0x04 //Status Register
#define CLK_CFG0_OFFSET 0x200 //Clock Configuration Register 0
#define CLK_CFG2_OFFSET 0x208 //Clock Configuration Register 2
#define CLK_CFG23_OFFSET 0x25C //Clock Configuration Register 23void clk_wiz_cfg(u32 clk_base_addr,double freq);#endif /* CLK_WIZ_H_ */
4.5.2 clk_wiz.c文件
注意事项:该设计设定
- 输入时钟 = 100MHz
- CLKFBOUT_MULT = 10
- DIVCLK_DIVIDE
于是,Fvco = 1000MHz为固定值,如此只需计算CLKOUT0_DIVIDE的值即可;但是,会出现输出时钟不准确的情况,例如需要输出148.5MHz的时钟
- div_factor = 6.734
- div_factor_int = 6
- div_factor_frac = 0.734 * 1000 = 734
实际情况是,CLKOUT0_DIVIDE的小数部分是以0.125为步进的,即小数值只能是0.000、0.125、0.250…0.875等值;对于0.734,个人认为Clocking Wizard IP核最后应该会选择一个最近的值0.750,实际输出148.148MHz;当我们在Vivado中配置Clocking Wizard IP核时,是可以精确的输出148.5MHz的时钟的;当然,对时钟要求不高的场合,这么做完全没问题。
//****************************************************************************************//#include "xclk_wiz.h"
#include "clk_wiz.h"
#include "xparameters.h"#define CLK_WIZ_IN_FREQ 100 //时钟IP核输入100MhzXClk_Wiz clk_wiz_inst; //时钟IP核驱动实例//时钟IP核动态重配置
//参数1:时钟IP核的器件ID
//参数2:时钟IP核输出的时钟 单位:MHz
void clk_wiz_cfg(u32 clk_device_id,double freq){double div_factor = 0;u32 div_factor_int = 0,dviv_factor_frac=0;u32 clk_divide = 0;u32 status = 0;//初始化XCLK_WizXClk_Wiz_Config *clk_cfg_ptr;clk_cfg_ptr = XClk_Wiz_LookupConfig(clk_device_id);XClk_Wiz_CfgInitialize(&clk_wiz_inst,clk_cfg_ptr,clk_cfg_ptr->BaseAddr);if(freq <= 0)return;//配置时钟倍频/分频系数XClk_Wiz_WriteReg(clk_cfg_ptr->BaseAddr,CLK_CFG0_OFFSET,0x00000a01); //10倍频,1分频//计算分频系数div_factor = CLK_WIZ_IN_FREQ * 10 / freq;div_factor_int = (u32)div_factor;dviv_factor_frac = (u32)((div_factor - div_factor_int) * 1000);clk_divide = div_factor_int | (dviv_factor_frac<<8);//配置分频系数XClk_Wiz_WriteReg(clk_cfg_ptr->BaseAddr,CLK_CFG2_OFFSET,clk_divide);//加载重配置的参数XClk_Wiz_WriteReg(clk_cfg_ptr->BaseAddr,CLK_CFG23_OFFSET,0x00000003);//获取时钟IP核的状态,判断是否重配置完成while(1){status = XClk_Wiz_ReadReg(clk_cfg_ptr->BaseAddr,CLK_SR_OFFSET);if(status&0x00000001) //Bit0 Locked信号return ;}
}