当前位置: 首页> 科技> 互联网 > 神经网络保存-导入

神经网络保存-导入

时间:2025/9/13 0:37:41来源:https://blog.csdn.net/qq_27047075/article/details/139675186 浏览次数:2次

保存

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz','t10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']paths = []for fname in files:paths.append(fname)with gzip.open(paths[0], 'rb') as lbpath:y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)with gzip.open(paths[1], 'rb') as imgpath:x_train = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)with gzip.open(paths[2], 'rb') as lbpath:y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)with gzip.open(paths[3], 'rb') as imgpath:x_test = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()x_train=np.expand_dims(x_train,-1)y_train_one_hot=tf.one_hot(y_train,10).numpy()
x_train=np.float32(x_train)model=tf.keras.Sequential([tf.keras.layers.Conv2D(1,3,1),tf.keras.layers.Flatten(),tf.keras.layers.Dense(256,activation="relu"),tf.keras.layers.Dense(128,activation="relu"),tf.keras.layers.Dense(64,activation="relu"),tf.keras.layers.Dense(32,activation="relu"),tf.keras.layers.Dense(10,activation="softmax")
])model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])import os
checkpoint_path="training_1/cp.ckpt"
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1)history=model.fit(x_train,y_train_one_hot,epochs=10,callbacks=[cp_callback])
LOSS=history.history["loss"]
plt.plot(LOSS)
plt.show()

导入

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import gzip
# fashion_mnist=tf.keras.datasets.fashion_mnist
# (train_images,train_labels),(test_images,test_labels)=fashion_mnist.load_data()#数据在个人资源里面,放到该文件目录中即可
def load_data():
#     dirname = os.path.join('datasets', 'fashion-mnist')
#     base = 'https://storage.googleapis.com/tensorflow/tf-ke ras-datasets/'files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz','t10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']paths = []for fname in files:paths.append(fname)with gzip.open(paths[0], 'rb') as lbpath:y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)with gzip.open(paths[1], 'rb') as imgpath:x_train = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28)with gzip.open(paths[2], 'rb') as lbpath:y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)with gzip.open(paths[3], 'rb') as imgpath:x_test = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(y_test), 28, 28)return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test)=load_data()x_test=np.expand_dims(x_test,-1)
model=tf.keras.Sequential([tf.keras.layers.Conv2D(1,3,1),tf.keras.layers.Flatten(),tf.keras.layers.Dense(256,activation="relu"),tf.keras.layers.Dense(128,activation="relu"),tf.keras.layers.Dense(64,activation="relu"),tf.keras.layers.Dense(32,activation="relu"),tf.keras.layers.Dense(10,activation="softmax")
])
model.build(input_shape=[None,28,28,1])
model.summary()
model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=[tf.keras.losses.CategoricalCrossentropy()])checkpoint_path="training_1/cp.ckpt"
model.load_weights(checkpoint_path)x_test=np.array(x_test,dtype=np.float32)
print(np.argmax(model.predict(x_test),axis=1))
print(y_test)
np.sum((y_test==np.argmax(model.predict(x_test),axis=1))*1)/y_test.shape[0]

关键字:神经网络保存-导入

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: