当前位置: 首页> 健康> 科研 > 常州建站程序_怎么做网页代理_谷歌排名_sem竞价代运营

常州建站程序_怎么做网页代理_谷歌排名_sem竞价代运营

时间:2025/7/10 0:53:22来源:https://blog.csdn.net/weixin_61426225/article/details/143071039 浏览次数:0次
常州建站程序_怎么做网页代理_谷歌排名_sem竞价代运营

state: T h e s t a t u s o f a g e n t w i t h r e s p e c t t o t h e e n v i r o n m e n t The \quad status \quad of \quad agent \quad with \quad respect \quad to \quad the \quad environment Thestatusofagentwithrespecttotheenvironment (agent 相对于环境的状态)

对于下面的网格地图来说: s t a t e state state就相当于$ location $,用 s 1 、 s 2 、 . . . 、 s 9 s_1、s_2、...、s_9 s1s2...s9来表示

1729303073134.png


state space T h e s e t o f a l l s t a t e S = { s i } i = 1 9 The \quad set \quad of \quad all \quad state \quad S = \{s_i\}_{i=1}^{9} ThesetofallstateS={si}i=19 状态空间,把所有 s t a t e state state放在一起得到的集合就是 s t a t e s p a c e state \quad space statespace


Action: F o r e a c h s t a t e , t h e r e a r e f i v e p o s s i b l e a c t o i n : a 1 、 a 2 、 a 3 、 a 4 、 a 5 For \quad each \quad state, \quad there \quad are \quad five \quad possible \quad actoin: a_1、a_2、a_3、a_4、a_5 Foreachstate,therearefivepossibleactoin:a1a2a3a4a5

1729303532260.png


Action space of a state: t h e s e t o f a l l p o s s i b l e a c t i o n s o f a q u a d s t a t e the \quad set \quad of \quad all possible actions \quad of \quad a \ quad state thesetofallpossibleactionsofa quadstate

A ( s i ) = { a i } i = 1 5 A(s_i) = \{a_i\}_{i=1}^{5} A(si)={ai}i=15


state transition: 当采取了一个 a c t i o n action action后, a g e n t agent agent从一个 s t a t e state state转移到另一个 s t a t e state state,这样一个过程佳作 s t a t e t r a n s i t i o n state \quad transition statetransition

1729304537661.png

s t a t e t r a n s i t i o n state \quad transition statetransition定义一种 a g e n t agent agent e n v i r o n m e n t environment environment交互的行为


Forbidden area:有两种情况,一种是forbidden are可以到达,但是会得到相应的惩罚,另一种是forbidden area不可到达,相当于有一堵墙。


Tabular representation:可以用表格来描述state transition
1729304959518.png
只能能表示确定的情况


相比于上面的表格,更一般的做法是使用下面这种方法

state transition probability:使用概率来描述state transition

image


Policy:告诉agent在一个状态应该采取什么动作
1729305366018.png
1729305463666.png
π \pi π在强化学习中用来表示条件概率,而不是圆周率
上面图片中的情况是确定性的策略,同时也有不确定的策略
1729305663829.png


Reward:reward是action采取一个action后得到的实数,一个正的reward代表鼓励采取这样的action,一个负的reward代表惩罚这样的action。

reward可以理解成一个 h u m a n − m a c h i n e i n t e r f a c e human-machine \quad interface humanmachineinterface,我们人类和机器交互的一个接口

reward依赖于当前的 s t a t e 和采取的 a c t i o n state和采取的action state和采取的action而不是依赖于接下来的 s t a t e state state


trajectory:是一个 s t a t e − a c t i o n − r e w a r d state-action-reward stateactionreward chain

1729306345177.png

1729306323925.png


Return:沿着trajectory,所有的reward相加得到得就是return

return的作用可以用来评估一个策略的好坏


discount return:
1729306642425.png

从上图可以看到上面的trajectory是无限长的,对应的return是发散的。

为了解决这个问题引入一个 d i s c o u n t r a t e γ ∈ [ 0 , 1 ) discount \quad rate \quad \gamma \in [0, 1) discountrateγ[0,1)

上面的return就可以用discount return来表示

$discount return = 0 + \gamma * 0 + {\gamma^2} * 0 + {\gamma^3} * 1 + {\gamma^4} * 1 + … $

d i s c o u n t r e t u r n = γ 3 ( 1 + γ + γ 2 + γ 3 + . . . ) discount return = \gamma^3(1 + \gamma + \gamma^2 + \gamma^3 + ...) discountreturn=γ3(1+γ+γ2+γ3+...)

d i s c o u n t r e t u r n = γ 3 ( 1 1 − γ ) discount return = \gamma^3(\frac{1}{1 - \gamma}) discountreturn=γ3(1γ1)


episode\trial:一个有限步的trajectory被称为episode,也就是有terminal states的trajectory。

可以采用方法将episodic转化为continue的,在terminal state时无论采取什么action都会回到terminal state。


MDP:Markov decision process,马尔可夫决策过程是一个框架framework

一个马尔可夫决策过程中有很多关键的元素:

set:

  1. State:
  2. Action
  3. Reward

Probability distribution:

  • State transition probability:在一个状态s,采取action a,转移到状态 s ′ s^{'} s的概率 p ( s ′ ∣ s , a ) p(s^{'}|s,a) p(ss,a)
  • Reward probability:在状态s,采取action a,得到reward r的概率 p ( r ∣ s , a ) p(r|s, a) p(rs,a)

Policy:
在状态s,采取action a的概率 π ( a ∣ s ) \pi(a|s) π(as)

Markov property:memoryless property

1729307848322.png

关键字:常州建站程序_怎么做网页代理_谷歌排名_sem竞价代运营

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: