当前位置: 首页> 文旅> 旅游 > 模糊C均值(FCM)算法更新公式推导

模糊C均值(FCM)算法更新公式推导

时间:2025/7/9 23:53:53来源:https://blog.csdn.net/weixin_43660703/article/details/139325731 浏览次数:0次

模糊C均值(FCM)算法更新公式推导

目标函数

FCM的目标函数为:

J m = ∑ i = 1 n ∑ j = 1 k u i j m ∥ x i − c j ∥ 2 J_m = \sum_{i=1}^n \sum_{j=1}^k u_{ij}^m \|x_i - c_j\|^2 Jm=i=1nj=1kuijmxicj2

其中:

  • x i x_i xi 是数据点, i = 1 , 2 , … , n i = 1, 2, \ldots, n i=1,2,,n
  • c j c_j cj 是第 j j j 个簇的中心, j = 1 , 2 , … , k j = 1, 2, \ldots, k j=1,2,,k
  • u i j u_{ij} uij 是数据点 x i x_i xi 属于第 j j j 个簇的隶属度。
  • m m m 是模糊度参数,通常 m > 1 m > 1 m>1

更新公式推导过程

1. 定义目标函数

J m = ∑ i = 1 n ∑ j = 1 k u i j m ∥ x i − c j ∥ 2 J_m = \sum_{i=1}^n \sum_{j=1}^k u_{ij}^m \|x_i - c_j\|^2 Jm=i=1nj=1kuijmxicj2

2. 引入约束条件

∑ j = 1 k u i j = 1 ∀ i \sum_{j=1}^k u_{ij} = 1 \quad \forall i j=1kuij=1i

使用拉格朗日乘数法,引入拉格朗日乘子 λ i \lambda_i λi,构造拉格朗日函数:

L = ∑ i = 1 n ∑ j = 1 k u i j m ∥ x i − c j ∥ 2 + ∑ i = 1 n λ i ( ∑ j = 1 k u i j − 1 ) \mathcal{L} = \sum_{i=1}^n \sum_{j=1}^k u_{ij}^m \|x_i - c_j\|^2 + \sum_{i=1}^n \lambda_i \left( \sum_{j=1}^k u_{ij} - 1 \right) L=i=1nj=1kuijmxicj2+i=1nλi(j=1kuij1)

3. 对 u i j u_{ij} uij 求偏导数并设为零

对拉格朗日函数 L \mathcal{L} L u i j u_{ij} uij 的偏导数并设为零:

∂ L ∂ u i j = m u i j m − 1 ∥ x i − c j ∥ 2 + λ i = 0 \frac{\partial \mathcal{L}}{\partial u_{ij}} = m u_{ij}^{m-1} \|x_i - c_j\|^2 + \lambda_i = 0 uijL=muijm1xicj2+λi=0

解这个方程得到:

u i j m − 1 = − λ i m ∥ x i − c j ∥ 2 u_{ij}^{m-1} = -\frac{\lambda_i}{m \|x_i - c_j\|^2} uijm1=mxicj2λi

为了保证 (u_{ij}) 非负,设 λ i = − m ζ \lambda_i = -m\zeta λi=mζ,则:

u i j m − 1 = ζ ∥ x i − c j ∥ 2 u_{ij}^{m-1} = \frac{\zeta}{\|x_i - c_j\|^2} uijm1=xicj2ζ
即:

u i j = ( ζ ∥ x i − c j ∥ 2 ) 1 m − 1 u_{ij} = \left( \frac{\zeta}{\|x_i - c_j\|^2} \right)^{\frac{1}{m-1}} uij=(xicj2ζ)m11

4. 求解拉格朗日乘子 ζ \zeta ζ

利用约束条件 ∑ j = 1 k u i j = 1 \sum_{j=1}^k u_{ij} = 1 j=1kuij=1

∑ j = 1 k ( ζ ∥ x i − c j ∥ 2 ) 1 m − 1 = 1 \sum_{j=1}^k \left( \frac{\zeta}{\|x_i - c_j\|^2} \right)^{\frac{1}{m-1}} = 1 j=1k(xicj2ζ)m11=1

解这个方程得到:

ζ = ( ∑ j = 1 k ( 1 ∥ x i − c j ∥ 2 ) 1 m − 1 ) 1 − m \zeta = \left( \sum_{j=1}^k \left( \frac{1}{\|x_i - c_j\|^2} \right)^{\frac{1}{m-1}} \right)^{1-m} ζ=(j=1k(xicj21)m11)1m

代入 u i j u_{ij} uij 的表达式,得到隶属度更新公式:

u i j = 1 ∑ l = 1 k ( ∥ x i − c j ∥ ∥ x i − c l ∥ ) 2 m − 1 u_{ij} = \frac{1}{\sum_{l=1}^k \left( \frac{\|x_i - c_j\|}{\|x_i - c_l\|} \right)^{\frac{2}{m-1}}} uij=l=1k(xiclxicj)m121

5. 对簇中心 c j c_j cj 求偏导数并设为零

对目标函数 J m J_m Jm c j c_j cj 求偏导数并设为零:

∂ J m ∂ c j = ∑ i = 1 n u i j m ( c j − x i ) = 0 \frac{\partial J_m}{\partial c_j} = \sum_{i=1}^n u_{ij}^m (c_j - x_i) = 0 cjJm=i=1nuijm(cjxi)=0

解这个方程得到:

∑ i = 1 n u i j m c j = ∑ i = 1 n u i j m x i \sum_{i=1}^n u_{ij}^m c_j = \sum_{i=1}^n u_{ij}^m x_i i=1nuijmcj=i=1nuijmxi

c j = ∑ i = 1 n u i j m x i ∑ i = 1 n u i j m c_j = \frac{\sum_{i=1}^n u_{ij}^m x_i}{\sum_{i=1}^n u_{ij}^m} cj=i=1nuijmi=1nuijmxi

总结

通过上述推导过程,我们得到了FCM算法的更新公式:

  • 隶属度更新公式:

u i j = 1 ∑ l = 1 k ( ∥ x i − c j ∥ ∥ x i − c l ∥ ) 2 m − 1 u_{ij} = \frac{1}{\sum_{l=1}^k \left(\frac{\|x_i - c_j\|}{\|x_i - c_l\|}\right)^{\frac{2}{m-1}}} uij=l=1k(xiclxicj)m121

  • 簇中心更新公式:

c j = ∑ i = 1 n u i j m x i ∑ i = 1 n u i j m c_j = \frac{\sum_{i=1}^n u_{ij}^m x_i}{\sum_{i=1}^n u_{ij}^m} cj=i=1nuijmi=1nuijmxi

这些公式在每次迭代中交替更新,直到目标函数收敛。

关键字:模糊C均值(FCM)算法更新公式推导

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: