当前位置: 首页> 汽车> 新车 > 网页设计图片的代码_直通车代运营_做一套二级域名网站怎么做_百度seo推广优化

网页设计图片的代码_直通车代运营_做一套二级域名网站怎么做_百度seo推广优化

时间:2025/7/9 11:16:09来源:https://blog.csdn.net/weixin_73404807/article/details/143490859 浏览次数: 0次
网页设计图片的代码_直通车代运营_做一套二级域名网站怎么做_百度seo推广优化

目录

  • 离散无记忆信道
  • 输入概率
  • 输出概率
  • 联合分布概率
  • 信道逆向概率
  • 一些记号
  • 示例1
  • 示例2

离散无记忆信道

离散:输入输出字母表都是有限的
无记忆:输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。

一个离散无记忆信道由输入字母表 S = { x 1 \mathcal{S} = \{ x_1 S={x1, ⋯ \cdots , x s } x_s\} xs}和输出字母表 Q = { y 1 \mathcal{Q} = \{ y_1 Q={y1, ⋯ \cdots , y t } y_t\} yt} 以及一系列信道概率 p ( y j ( y_j (yj| x i ) x_i) xi) 组成,其中信道概率满足条件:对任意 1 ≤ 1\leq 1i ≤ \leq s,

∑ j = 1 t p ( y j ∣ x i ) = 1. \sum_{\mathrm{j=1}}^\mathrm{t}\mathrm{p(y_j|x_i)=1.} j=1tp(yjxi)=1.

直观地,可以把 p ( y j ( y_{j} (yj| x i x_{i} xi) 当 成 通 过 该 信 道 发 送 x i x_{i} xi 时,接收到 y j _\mathrm{j~} j 的概
率。
上述定义中离散的意思是指输入输出字母表都是有限的,而无记忆的意思是指输出字符 d i d_i di 被接收到的概率只依赖于当前的输入 c i c_i ci, 而与前面的输入无关。
还要注意到离散无记忆信道定义中的时间位置的独立性,也就是通过信道传输一个字符发生错误的概率跟发送的时间以及该字符在码字中的位置无关。

进一步,如果 ( c 1 ( c_1 (c1, ⋯ \cdots , c n c_n cn) 和 ( d 1 ( d_1 (d1, ⋯ \cdots , d n d_n dn) 分别是字母表 S S S和字母表 Q Q Q 上的长度为 n 的码字,那么通过信道发送 c = ( c 1 , ⋯ , c n ) =(\mathfrak{c}_1,\cdots,\mathfrak{c}_{\mathfrak{n}}) =(c1,,cn)时,接收到d = ( d 1 , ⋯ , d n ) =(\mathrm{d}_1,\cdots,\mathrm{d}_{\mathrm{n}}) =(d1,,dn)的概率为
p ( d ∣ c ) = ∏ i = 1 n p ( d i ∣ c i ) . \mathrm{p(d|c)=\prod_{i=1}^np(d_i|c_i).} p(d∣c)=i=1np(dici).



输入概率

因为信道的输入本质上具有概率的特性,所以可以把信道的输入当成随机变量 X 的值,并且其输入概率分布由下式定义

P ( X = x i ) = p ( x i ) . \mathrm{P(X=x_i)=p(x_i).} P(X=xi)=p(xi).



输出概率

每个输入 X 会引发一个输出 Y, 输出概率分布由输入分布和信道概率所确定,即:

P ( Y = y j ) = ∑ i = 1 s p ( y j ∣ x i ) p ( x i ) . \mathrm{P(Y=y_j)=\sum_{i=1}^sp(y_j|x_i)p(x_i).} P(Y=yj)=i=1sp(yjxi)p(xi).


联合分布概率

联合分布律由下式给出:

P ( X = x i , Y = y j ) = p ( y j ∣ x i ) p ( x i ) . \mathrm{P(X=x_i,Y=y_j)=p(y_j|x_i)p(x_i).} P(X=xi,Y=yj)=p(yjxi)p(xi).



信道逆向概率

信道逆向概率定义为

P ( X = x i ∣ Y = y j ) = P ( X = x i , Y = y j ) P ( Y = y j ) . \mathrm{P(X=x_i|Y=y_j)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}.} P(X=xi∣Y=yj)=P(Y=yj)P(X=xi,Y=yj).



一些记号

为方便起见,会使用一些记号:
p ( x i ) = P ( X = x i ) \mathrm{p(x_i)=P(X=x_i)} p(xi)=P(X=xi)
p ( y j ) = P ( Y = y j ) \mathrm{p(y_j)=P(Y=y_j)} p(yj)=P(Y=yj)
p ( x i , y j ) = P ( X = x i , Y = y j ) \mathrm{p(x_i,y_j)=P(X=x_i,Y=y_j)} p(xi,yj)=P(X=xi,Y=yj)
p ( x i ∣ y j ) = P ( X = x i ∣ Y = y j ) \mathrm{p(x_i|y_j)=P(X=x_i|Y=y_j)} p(xiyj)=P(X=xi∣Y=yj)
p ( y j ∣ x i ) = P ( Y = y j ∣ X = x i ) \mathrm{p(y_j|x_i)=P(Y=y_j|X=x_i)} p(yjxi)=P(Y=yj∣X=xi)



示例1

一个重要的离散无记忆信道是前文用过的二元对称信道,其输入输
出字母表为{0}1}。信道概率为

P ( 0 ∣ 1 ) = P ( 1 ∣ 0 ) = p P ( 0 ∣ 0 ) = P ( 1 ∣ 1 ) = 1 − p \begin{aligned}&P\left(0\mid1\right)=P\left(1\mid0\right)=p\\&P\left(0\mid0\right)=P\left(1\mid1\right)=1-p\end{aligned} P(01)=P(10)=pP(00)=P(11)=1p也就是说,交叉概率(每个比特传输的错误概率)为 p p p



示例2

二元擦除信道的信道概率为
P ( 1 ∣ 1 ) = r , P ( ? ∣ 1 ) = s , P ( 0 ∣ 1 ) = 1 − r − s P ( 0 ∣ 0 ) = p , P ( ? ∣ 0 ) = q , P ( 1 ∣ 0 ) = 1 − p − q P(1\mid1)=r\:,\:P(?\mid1)=s\:,\:P(0\mid1)=1-r-s\\P(0\mid0)=p\:,\:P(?\mid0)=q\:,\:P(1\mid0)=1-p-q P(11)=r,P(?1)=s,P(01)=1rsP(00)=p,P(?0)=q,P(10)=1pq这里的“?”可以解释为输人丢失或者擦除。、



关键字:网页设计图片的代码_直通车代运营_做一套二级域名网站怎么做_百度seo推广优化

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: