当前位置: 首页> 汽车> 车展 > pyTorch构建图片分类器

pyTorch构建图片分类器

时间:2025/7/12 19:45:28来源:https://blog.csdn.net/w13716207404/article/details/139240547 浏览次数: 0次
# -*- coding: utf-8 -*-
# @Author  : Chinesejun
# @Email   : itcast@163.com
# @File    : 03-cifar10案例.py
# @Software: PyCharmimport torch
import torchvision
# torchvision.transforms是pytorch中的图像预处理包,包含了很多种对图像数据进行变换的函数
import torchvision.transforms as transforms# transforms.ToTensor--> 把一个取值范围是[0,255]的PIL.Image或者shape为(H,W,C)的numpy.ndarray,转换成形状为[C,H,W],
# 取值范围是[0,1.0]的torch.FloadTensor
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
# num_workers:要使用多少个子流程来处理数据装载。' ' 0 ' '表示数据将被加载到主进程中
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)# 注意这个地方的顺序不能变换, 是定死的
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')import matplotlib.pyplot as plt
import numpy as npdef imshow(img):img = img / 2 + 0.5npimg = img.numpy()# print("npimg===", npimg.shape)# print("转置===", np.transpose(npimg, (1, 2, 0)).shape)# 需要转置是因为imshow中参数的要求'''- (M, N): an image with scalar data. The data is visualizedusing a colormap.- (M, N, 3): an image with RGB values (0-1 float or 0-255 int).- (M, N, 4): an image with RGBA values (0-1 float or 0-255 int),i.e. including transparency.The first two dimensions (M, N) define the rows and columns ofthe image.'''# 扩展: transpose: https://numpy.org/doc/stable/reference/generated/numpy.transpose.htmlplt.imshow(np.transpose(npimg, (1, 2, 0)))# plt.savefig('./cafar10.png')plt.savefig('./cafar11.png')# plt.show()print("trainloader===", trainloader)
dataiter = iter(trainloader)
# print('dataiter===', dataiter)
images, labels = dataiter.next()
# print('images===', images.shape)
# print('labels===', labels)
# make_grid的作用是将若干幅图像拼成一幅图像
imshow(torchvision.utils.make_grid(images))# 下标从0开始
print([labels[j] for j in range(4)])
'''
[tensor(1), tensor(5), tensor(3), tensor(0)]car   dog   cat plane
'''
# 因为类别顺序是死的, 所以可以一一对应
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))# # todo 2: 定义卷积神经网络
import torch.nn as nn
import torch.nn.functional as Fclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.conv2 = nn.Conv2d(6, 16, 5)self.pool = nn.MaxPool2d(2, 2)# 这个地方的16*5*5怎么计算的 N1 = (N − F + 2P )/S+1# 输入图片大小为N,过滤器大小为F,步长为S,零填充为P# (32-5+2*0)/1+1=28   最大池化  28/2=14# (14-5+2*0)/1+1=10           10/2=5self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xnet = Net()
#
# # todo 3: 定义损失函数
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
#
# # # ==========
# # # 在GPU上训练模型
# #
# # device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# # print(device)
# # #
# # # ==========
# #
# todo 4: 在训练集上训练模型
for epoch in range(10):running_loss = 0.0for i, data in enumerate(trainloader, 0): # 0表示下标起始位置inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)# print('outputsshape====', outputs.shape) # outputsshape==== torch.Size([4, 10])# print('labeslshape===', labels.shape) # labeslshape=== torch.Size([4])loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() # 这里因为loss计算完之后里面只有一个值, 所以可以用itemif (i+1) %  2000 == 0:print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/2000) )running_loss = 0.0print("Finished Training")# 保存模型
PATH = './cifar_net.pth'
#
# 保存模型的状态字典
# model.state_dict()其实返回的是一个OrderDict,存储了网络结构的名字和对应的参数
# print("保存的模型参数:", net.state_dict())
# torch.save(net.state_dict(), PATH)
#
# # todo 5: 在测试集上测试模型
dataiter =  iter(testloader)
images, labels = dataiter.next()# imshow(torchvision.utils.make_grid(images))
print("GroundTruth:", " ".join('%5s' % classes[labels[j]] for j in range(4)))net = Net()
net.load_state_dict(torch.load(PATH))outputs = net(images)
# # 这两个是一样的
# # print("outputs===", outputs)
print("outputs===", outputs.shape)
# outputs=== torch.Size([4, 10]) # 代表 4个图片, 每张图片有10个预测值, 在这10个预测值中选择最大的
# # print("outputsdata===", outputs.data)
# # 注意: torch.max返回两个值, 一个是所在行的最大值,一个最大值所对应得索引
_, predicted = torch.max(outputs, 1)
print('predicted===', predicted)
#
print("Predicted:", "  ".join("%5s"%classes[predicted[j]] for j in range(4)))correct = 0
total = 0
with torch.no_grad():for data in testloader:images, labels = dataoutputs = net(images)# print("outputs==", outputs)# print("outputsdata==", outputs.data)_, predicted = torch.max(outputs.data, 1)# print('labels.size==', labels.size(0))total += labels.size(0)# print("求和====:", (predicted == labels))# print("求和====:", (predicted == labels).sum())# print("求和====:", (predicted == labels).sum().item())correct += (predicted == labels).sum().item()print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))# 判断每种类别的准确率
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))with torch.no_grad():for data in testloader:images, labels = data# ========# net.to(device)# inputs, labels = data[0].to(device), data[1].to(device)# ========outputs = net(images)_, predicted = torch.max(outputs, 1)# 先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,# 一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行c = (predicted == labels)print('c=====', c.size())c = (predicted == labels).squeeze()for i in range(4):# print('labels===', labels)# print('c===', c)label =  labels[i]# print("label===", label)# print('c[]===', c[i])# print('c[]===', c[i].item())'''labels=== tensor([9, 3, 4, 4])c=== tensor([ True,  True, False, False])label=== tensor(9)c[]=== tensor(True)c[]=== Truelabels=== tensor([9, 3, 4, 4])c=== tensor([ True,  True, False, False])label=== tensor(3)c[]=== tensor(True)c[]item=== True'''class_correct[label] += c[i].item()  # 这里只把是True的类别进行统计class_total[label] += 1# print("class_correct===", class_correct)# print("class_total===", class_total)for i in range(10):# print("class_correct[i]===", class_correct[i])print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i]))
关键字:pyTorch构建图片分类器

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: