当前位置: 首页> 汽车> 维修 > 【第四节】C/C++数据结构之树与二叉树

【第四节】C/C++数据结构之树与二叉树

时间:2025/7/12 23:35:07来源:https://blog.csdn.net/linshantang/article/details/139465860 浏览次数: 0次

目录

一、基本概念与术语

二、树的ADT

三、二叉树的定义和术语

四、平衡二叉树

4.1 解释

4.2 相关经典操作

4.3 代码展示


一、基本概念与术语

树(Tree)是由一个或多个结点组成的有限集合T。其中:
1 有一个特定的结点,称为该树的根(root)结点;
2 每个树都有且仅有一个特定的,称为根(Root)的节点。

树的常用术语:
1 当n>1时,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree);
2 节点的子树称为该节点的子节点(Child),相应的,该节点称为子节点的父节点(Parent );
3 同一个父节点的子节点之间称为兄弟节点(Sibling);
4 节点的层次(Level)从根节点开始定义,根为第一层,根的子节点为第二层,双亲在同一层的节点互为堂兄弟,树中节点最大的层次称为树的深度或高度;
5 如果将树中节点的各子树看成从左到右是有次序的,不能互换的,则称该树为有序R树,否则称为无序树;
6 如果有n颗互不相交的树组成一个集合,则这个集合被称之为森林。

二、树的ADT

数据及关系:
    具有相同数据类型的数据元素或结点的有限集合。树T的二元组形式为:                           
            T=(D,R)
    其中D为树T中结点的集合,R为树中结点之间关系的集合。
                           D={Root}∪DF
    其中,Root为树T的根结点,DF为树T的根Root的子树集合。
                      R={<Root,ri>,i=1,2,…,m}
    其中,ri是树T的根结点Root的子树Ti的根结点。
操作:
    Constructor:
        前提:已知根结点的数据元素之值。
        结果:创建一棵树。
    Getroot:
        前提:已知一棵树。.
        结果:得到树的根结点。
    FirstChild:
        前提:已知树中的某一指定结点 p。
        结果:得到结点 p 的第一个儿子结点。
    NextChild:
        前提:已知树中的某一指定结点 p 和它的一个儿子结点 u。
        结果:得到结点 p 的儿子结点 u 的下一个兄弟结点 v。

基本操作:

        初始化一棵空树;
        创建一棵树;
        判断空树,为空返回True,否则返回False;
        按照某特定顺序遍历一棵树;
        求树的深度;
        在树中某特定位置插入结点;
        在树中某特定位置删除结点;
        求某结点的双亲结点;
        销毁树;
        等等;

三、二叉树的定义和术语

        二叉树(Tree)是n个节点的有限集合,该集合为空集(或称为空二叉树),或者由一个根节点和两颗互不相交的、分别称为根节点的左子树与右子树的二叉树组成。
A. 所有节点都只有左子树的二叉树叫左斜树,所有节点都只有右子树的二叉树叫右斜树,这两者统称为斜树;
B. 在一棵二叉树中,如果所有分支节点都存在左子树与右子树,并且所有叶子都在同一层次上,这样的二叉树称为满二叉树;
C. 对一颗具有n个结点的二叉树按层序编号,如果编号i(1<i<n)的节点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这颗二叉树称为完全叉树。

四、平衡二叉树

4.1 解释

        平衡二叉树(Balanced Binary Tree),又称为AVL树(有别于AVL算法),是一种特殊的二叉搜索树(Binary Search Tree)结构12。它具有以下性质:

  1. 它可以是空树2。
  2. 它的左子树和右子树的高度差的绝对值不超过12。
  3. 它的左子树和右子树都是平衡二叉树12。

        平衡二叉树的设计目的是为了解决普通二叉搜索树在插入、删除等操作时可能产生的不平衡问题,从而避免树的高度过高,确保搜索效率始终保持在相对优化的水平。在平衡二叉树中,查找、插入和删除操作的时间复杂度都可以维持在O(logN)2。

平衡二叉树在计算机科学中有广泛的应用,例如:

  • 数据库索引:用于加速数据库的查询操作3。
  • 查找和排序:可以快速查找和排序数据3。
  • 模拟实际问题:如航班预定系统中的座位分配3。
  • 实现字典或符号表:键是树中的节点,值是与该键相关联的数据,支持高效的查找、插入和删除操作3。
  • 实现线性数据结构:如栈、队列和优先队列3。
  • 网络路由:用于实现网络路由表,进行快速的路由查找3。
  • 文件系统:用于实现文件系统的索引结构,支持快速的文件查找和访问3。

        总之,平衡二叉树是一种高效的数据结构,它通过保持树的平衡来优化搜索性能,并在各种应用中发挥着重要作用。

4.2 相关经典操作

        平衡二叉树(AVL树)在插入或删除节点后,可能会破坏其平衡性(即左右子树的高度差超过1)。为了重新恢复平衡,需要进行旋转操作。旋转操作包括四种:左单旋、右单旋、左右旋和右左旋。下面我会逐一解释这四种操作:

1. 左单旋
        当某个节点的左子树的左子树插入了一个新节点,导致该节点失去平衡时,需要进行左单旋。

步骤:

  • 以失去平衡的节点为根的子树中,找到该节点左子树的根节点(记作A)。
  • 将A节点提升为新的根节点。
  • 将原根节点变为A的右子树。
  • A的左子树保持不变。

左单旋的结果是将不平衡向右侧转移。

左单旋举例:

        针对节点8,它的左子树的高度是1,右子树的高度是3,高度差超过1.并且出错的节点13和15均位于节点8的右子节点12的右边,则通过左旋便可修复。

其一左单旋的结果:

动图展示:

2. 右单旋
        与左单旋对称,当某个节点的右子树的右子树插入了一个新节点,导致该节点失去平衡时,需要进行右单旋。

步骤:

  • 以失去平衡的节点为根的子树中,找到该节点右子树的根节点(记作A)。
  • 将A节点提升为新的根节点。
  • 将原根节点变为A的左子树。
  • A的右子树保持不变。

右单旋的结果是将不平衡向左侧转移。

右单旋举例:

        针对节点8,它的左子树的高度为3,右子树高度为1,高度差超过1。并且出错的节点1和3位于8节点的左子节点4的左边。针对这种类型的非平衡树,通过右旋便可以使其重新平衡。
具体做法: 将节点8作为节点4的右子节点,节点6作为节点8的左子节点

其一右单旋的结果:

用一个动图来表示 右旋

3. 左右旋
        当某个节点的左子树的右子树插入了一个新节点,导致该节点失去平衡时,需要进行左右旋。

步骤:

  • 先对失去平衡的节点的左子树进行右单旋。
  • 再对整棵树进行左单旋。

        左右旋实际上是右单旋和左单旋的组合,它首先尝试将不平衡向右侧转移,然后再将不平衡向左侧转移。

左右旋举例:

        针对节点8,左子树的高度是3,右子树高度是1,高度差超过1。并且出错的节点5和7均位于节点8的左节点4的右边。这种情况需要先左旋再右旋便可恢复。

        针对节点4进行左旋,左旋后变成了需要右旋的情况,可参考上面的右旋进行旋转即可。

4. 右左旋
        与左右旋对称,当某个节点的右子树的左子树插入了一个新节点,导致该节点失去平衡时,需要进行右左旋。

步骤:

  • 先对失去平衡的节点的右子树进行左单旋。
  • 再对整棵树进行右单旋。

        右左旋实际上是左单旋和右单旋的组合,它首先尝试将不平衡向左侧转移,然后再将不平衡向右侧转移。

        这些旋转操作确保了AVL树在插入或删除节点后仍然保持平衡,从而保证了树的搜索效率。在进行旋转操作时,还需要更新相关节点的高度信息,以便在后续操作中继续检查平衡性。

右左旋举例:

类似的针对12节点先进行右旋,再整体左旋,原理类似 不再赘述

4.3 代码展示

        平衡二叉树的左单旋,右单旋,左右旋,右左旋操作代码演示

#include "Tree.h"CTree::CTree() :m_pRoot(0), m_nCount(0)
{
}CTree::~CTree()
{
}//************************************
// Method:    AddData 添加数据
// FullName:  CTree::AddData
// Access:    private 
// Returns:   bool
// Parameter: int nData
//************************************
bool CTree::AddData(int nData)
{return AddData(m_pRoot, nData);
}//************************************
// Method:    AddData
// FullName:  CTree::AddData
// Access:    private 
// Returns:   bool
// Parameter: PTREE_NODE & pTree 根节点
// Parameter: int nData
//************************************
bool CTree::AddData(TREE_NODE*& pTree, int nData)
{//pTree是否为空,如果为空说明有空位可以添加if (!pTree){pTree = new TREE_NODE{};pTree->nElement = nData;m_nCount++;return true;}//与根做对比,小的放在其左子树,否则放在右子树if (nData > pTree->nElement){AddData(pTree->pRChild, nData);//判断是否平衡if (GetDeep(pTree->pRChild) - GetDeep(pTree->pLChild) == 2){//判断如何旋转if (pTree->pRChild->pRChild){//左旋LeftWhirl(pTree);}else if (pTree->pRChild->pLChild){//右左旋RightLeftWhirl(pTree);}}}if (nData < pTree->nElement){AddData(pTree->pLChild, nData);//判断是否平衡if (GetDeep(pTree->pLChild) -GetDeep(pTree->pRChild) == 2){//判断如何旋转if (pTree->pLChild->pLChild){//右旋RightWhirl(pTree);}else if (pTree->pLChild->pLChild){//左右旋LeftRightWhirl(pTree);}}}
}//************************************
// Method:    DelData   删除元素
// FullName:  CTree::DelData
// Access:    private 
// Returns:   bool
// Parameter: int nData
//************************************
bool CTree::DelData(int nData)
{return DelData(m_pRoot, nData);
}//************************************
// Method:    DelData
// FullName:  CTree::DelData
// Access:    private 
// Returns:   bool
// Parameter: PTREE_NODE & pTree 根节点
// Parameter: int nData
//************************************
bool CTree::DelData(PTREE_NODE& pTree, int nData)
{bool bRet = false;//判断是否为空树if (empty()){return false;}//开始遍历要删除的数据if (pTree->nElement == nData){//判断是否为叶子节点,是就可以直接删除,//不是则需要找代替if (!pTree->pLChild && !pTree->pRChild){delete pTree;pTree = nullptr;m_nCount--;return true;}//根据左右子树的深度查找要替换的节点if (GetDeep(pTree->pLChild) >= GetDeep(pTree->pRChild)){PTREE_NODE pMax = GetMaxOfLeft(pTree->pLChild);pTree->nElement = pMax->nElement;DelData(pTree->pLChild, pMax->nElement);}else{PTREE_NODE pMin = GetMinOfRight(pTree->pRChild);pTree->nElement = pMin->nElement;DelData(pTree->pRChild, pMin->nElement);}}else if (nData > pTree->nElement){bRet = DelData(pTree->pRChild, nData);//判断是否平衡if (GetDeep(pTree->pLChild) -GetDeep(pTree->pRChild) == 2){//判断如何旋转if (pTree->pLChild->pLChild){//右旋RightWhirl(pTree);}else if (pTree->pLChild->pLChild){//左右旋LeftRightWhirl(pTree);}}}else /*if (nData < pTree->nElement)*/{bRet = DelData(pTree->pLChild, nData);//判断是否平衡if (GetDeep(pTree->pRChild) -GetDeep(pTree->pLChild) == 2){//判断如何旋转if (pTree->pRChild->pRChild){//左旋LeftWhirl(pTree);}else if (pTree->pRChild->pLChild){//右左旋RightLeftWhirl(pTree);}}}return bRet;
}//************************************
// Method:    ClearTree 清空元素
// FullName:  CTree::ClearTree
// Access:    private 
// Returns:   void
//************************************
void CTree::ClearTree()
{ClearTree(m_pRoot);m_nCount = 0;
}//************************************
// Method:    ClearTree
// FullName:  CTree::ClearTree
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE & pTree 根节点
//************************************
void CTree::ClearTree(PTREE_NODE& pTree)
{//从叶子节点开始删除//删除其左右子树后再删除根节点本身//判断是否为空树if (empty()){return;}//判断是否为叶子节点if (!pTree->pLChild && !pTree->pRChild){delete pTree;pTree = nullptr;return;}ClearTree(pTree->pLChild);ClearTree(pTree->pRChild);ClearTree(pTree);
}//************************************
// Method:    TravsoualPre 前序遍历
// FullName:  CTree::TravsoualPre
// Access:    private 
// Returns:   void
//************************************
void CTree::TravsoualPre()
{TravsoualPre(m_pRoot);
}//************************************
// Method:    TravsoualPre
// FullName:  CTree::TravsoualPre
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE pTree 根节点
//************************************
void CTree::TravsoualPre(PTREE_NODE pTree)
{//递归的返回条件if (!pTree){return;}//根左右printf("%d ", pTree->nElement);TravsoualPre(pTree->pLChild);TravsoualPre(pTree->pRChild);
}//************************************
// Method:    TravsoualMid  中序遍历
// FullName:  CTree::TravsoualMid
// Access:    private 
// Returns:   void
//************************************
void CTree::TravsoualMid()
{TravsoualMid(m_pRoot);
}//************************************
// Method:    TravsoualMid
// FullName:  CTree::TravsoualMid
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE pTree 根节点
//************************************
void CTree::TravsoualMid(PTREE_NODE pTree)
{//递归的返回条件if (!pTree){return;}//左根右TravsoualMid(pTree->pLChild);printf("%d ", pTree->nElement);TravsoualMid(pTree->pRChild);
}//************************************
// Method:    TravsoualBack  后序遍历
// FullName:  CTree::TravsoualBack
// Access:    private 
// Returns:   void
//************************************
void CTree::TravsoualBack()
{TravsoualBack(m_pRoot);
}//************************************
// Method:    TravsoualBack
// FullName:  CTree::TravsoualBack
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE pTree 根节点
//************************************
void CTree::TravsoualBack(PTREE_NODE pTree)
{//递归的返回条件if (!pTree){return;}//左右根TravsoualBack(pTree->pLChild);TravsoualBack(pTree->pRChild);printf("%d ", pTree->nElement);
}//************************************
// Method:    层序遍历
// FullName:  CTree::LevelTravsoual
// Access:    public 
// Returns:   void
//************************************
void CTree::LevelTravsoual()
{vector<PTREE_NODE> vecRoot;  //保存根节点vector<PTREE_NODE> vecChild; //保存根节点的子节点vecRoot.push_back(m_pRoot);while (vecRoot.size()){for (int i = 0; i < vecRoot.size();i++){printf("%d ", vecRoot[i]->nElement);//判断其是否左右子节点if (vecRoot[i]->pLChild){vecChild.push_back(vecRoot[i]->pLChild);}if (vecRoot[i]->pRChild){vecChild.push_back(vecRoot[i]->pRChild);}}vecRoot.clear();vecRoot = vecChild;vecChild.clear();printf("\n");}
}//************************************
// Method:    GetCount  获取元素个数
// FullName:  CTree::GetCount
// Access:    public 
// Returns:   int
//************************************
int CTree::GetCount()
{return m_nCount;
}//************************************
// Method:    GetDeep 获取节点深度
// FullName:  CTree::GetDeep
// Access:    private 
// Returns:   int
// Parameter: PTREE_NODE & pTree 
//************************************
int CTree::GetDeep(PTREE_NODE pTree)
{//判断pTree是否为空if (!pTree){return 0;}int nL = GetDeep(pTree->pLChild);int nR = GetDeep(pTree->pRChild);//比较左右子树的深度,取最大值加 1 返回return (nL >= nR ? nL : nR) + 1;
}//************************************
// Method:    GetMaxOfLeft 获取左子树中的最大值
// FullName:  CTree::GetMaxOfLeft
// Access:    private 
// Returns:   PTREE_NODE
// Parameter: PTREE_NODE pTree
//************************************
PTREE_NODE CTree::GetMaxOfLeft(PTREE_NODE pTree)
{//只要存在右子树就有更大的值//是否空if (!pTree){return 0;}//判断是否有右子树while (pTree->pRChild){pTree = pTree->pRChild;}//返回最大值节点return pTree;
}//************************************
// Method:    GetMinOfRight 获取右子树中的最小值
// FullName:  CTree::GetMinOfRight
// Access:    private 
// Returns:   PTREE_NODE
// Parameter: PTREE_NODE pTree
//************************************
PTREE_NODE CTree::GetMinOfRight(PTREE_NODE pTree)
{//只要存在左子树就有更小的值//是否空if (!pTree){return 0;}//判断是否有右子树while (pTree->pLChild){pTree = pTree->pLChild;}return pTree;
}//************************************
// Method:    LeftWhirl 左旋
// FullName:  CTree::LeftWhirl
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE & pTree
//************************************
void CTree::LeftWhirl(PTREE_NODE& pK2)
{
/*k2                  k1k1   ==>       k2    NX  N              X
*///保存k1PTREE_NODE pK1 = pK2->pRChild;//保存XpK2->pRChild = pK1->pLChild;//k2变成k1的左子树pK1->pLChild = pK2;//k1变成k2pK2 = pK1;
}//************************************
// Method:    RightWhirl  右旋
// FullName:  CTree::RightWhirl
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE & pTree
//************************************
void CTree::RightWhirl(PTREE_NODE& pK2)
{
/*k2            k1k1     ==>    N    k2N  X               X
*///保存k1PTREE_NODE pK1 = pK2->pLChild;//保存XpK2->pLChild = pK1->pRChild;//k1的右子树为k2pK1->pRChild = pK2;//k2为k1pK2 = pK1;
}//************************************
// Method:    LeftRightWhirl 左右旋
// FullName:  CTree::LeftRightWhirl
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE & pTree
//************************************
void CTree::LeftRightWhirl(PTREE_NODE& pK2)
{
/*k2               k2              Nk1     左旋       N       右旋  K1   K2N             k1 [x]             [x][x]     
*/LeftWhirl(pK2->pLChild);RightWhirl(pK2);
}//************************************
// Method:    RightLeftWhirl 右左旋
// FullName:  CTree::RightLeftWhirl
// Access:    private 
// Returns:   void
// Parameter: PTREE_NODE & pTree
//************************************
void CTree::RightLeftWhirl(PTREE_NODE& pK2)
{
/*k2               k2                   Nk1    右旋       N     左旋    k2     K1N               [x]  k1           [x][x]
*/RightWhirl(pK2->pRChild);LeftWhirl(pK2);
}bool CTree::empty()
{return m_pRoot == 0;
}

调用代码:

#include "Tree.h"int main()
{CTree tree;tree.AddData(1);tree.AddData(2);tree.AddData(3);tree.AddData(4);tree.AddData(5);tree.AddData(6);tree.AddData(7);tree.AddData(8);tree.AddData(9);tree.AddData(10);tree.LevelTravsoual();tree.DelData(4);tree.LevelTravsoual();return 0;
}

关键字:【第四节】C/C++数据结构之树与二叉树

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: