当前位置: 首页> 教育> 培训 > 本地黄页小程序_网页设计中文本居中用什么代码_百度网盘搜索引擎入口_营业推广的概念

本地黄页小程序_网页设计中文本居中用什么代码_百度网盘搜索引擎入口_营业推广的概念

时间:2025/7/13 0:16:37来源:https://blog.csdn.net/gzjimzhou/article/details/143242237 浏览次数:2次
本地黄页小程序_网页设计中文本居中用什么代码_百度网盘搜索引擎入口_营业推广的概念

在这里插入图片描述

深度学习的技术演进经历了从卷积神经网络(CNN)到循环神经网络(RNN)再到 Transformer 的重要发展。这三个架构分别擅长处理图像、序列数据和多种任务的特征,标志着深度学习在不同领域取得的进步。


1. 卷积神经网络(CNN)

基本原理

CNN 最早用于图像处理任务,利用卷积操作和池化层来提取图像的空间特征。CNN 中的核心是卷积核(或过滤器),它会在输入图像上滑动,以获得局部特征,再经过多个卷积层和池化层逐步抽取高层次的特征。CNN 利用权值共享和局部感知,适合处理固定大小的输入和空间不变性的任务。

Python 示例代码

以下代码使用 PyTorch 构建一个简单的 CNN 来处理手写数字数据集(MNIST):

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms# CNN 模型定义
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.fc1 = nn.Linear(64 * 7 * 7, 128)self.fc2 = nn.Linear(128, 10)self.pool = nn.MaxPool2d(2, 2)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x
关键字:本地黄页小程序_网页设计中文本居中用什么代码_百度网盘搜索引擎入口_营业推广的概念

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: