当前位置: 首页> 教育> 大学 > LangChain —— 多模态大模型的 prompt template

LangChain —— 多模态大模型的 prompt template

时间:2025/7/12 15:23:08来源:https://blog.csdn.net/cheese_burger_/article/details/140351968 浏览次数:0次

文章目录

  • 一、如何直接将多模态数据传输给模型
  • 二、如何使用 mutimodal prompts


一、如何直接将多模态数据传输给模型

 在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain 在类中提供了内在逻辑来转化为期待的格式。
 传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。

import base64
import httpximage_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")message = HumanMessage(content=[{"type": "text", "text": "describe the weather in this image"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{image_data}"},},],
)
response = model.invoke([message])
print(response.content)

 我们可以直接在“image_URL”类型的内容块中提供图像URL。但是注意,只有一些模型提供程序支持此功能。

message = HumanMessage(content=[{"type": "text", "text": "describe the weather in this image"},{"type": "image_url", "image_url": {"url": image_url}},],
)
response = model.invoke([message])
print(response.content)

 我们也可以传多个图片。

message = HumanMessage(content=[{"type": "text", "text": "are these two images the same?"},{"type": "image_url", "image_url": {"url": image_url}},{"type": "image_url", "image_url": {"url": image_url}},],
)
response = model.invoke([message])
print(response.content)

二、如何使用 mutimodal prompts

 在这里,我们将描述一下怎么使用 prompt templates 来为模型格式化 multimodal imputs。

import base64
import httpximage_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")prompt = ChatPromptTemplate.from_messages([("system", "Describe the image provided"),("user",[{"type": "image_url","image_url": {"url": "data:image/jpeg;base64,{image_data}"},}],),]
)

 我们也可以给模型传入多个图片。

prompt = ChatPromptTemplate.from_messages([("system", "compare the two pictures provided"),("user",[{"type": "image_url","image_url": {"url": "data:image/jpeg;base64,{image_data1}"},},{"type": "image_url","image_url": {"url": "data:image/jpeg;base64,{image_data2}"},},],),]
)chain = prompt | modelresponse = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)
关键字:LangChain —— 多模态大模型的 prompt template

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: