文章目录
- 一、如何直接将多模态数据传输给模型
- 二、如何使用 mutimodal prompts
一、如何直接将多模态数据传输给模型
在这里,我们演示了如何将多模式输入直接传递给模型。对于其他的支持多模态输入的模型提供者,langchain 在类中提供了内在逻辑来转化为期待的格式。
传入图像最常用的方法是将其作为字节字符串传入。这应该适用于大多数模型集成。
import base64
import httpximage_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")message = HumanMessage(content=[{"type": "text", "text": "describe the weather in this image"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{image_data}"},},],
)
response = model.invoke([message])
print(response.content)
我们可以直接在“image_URL”类型的内容块中提供图像URL。但是注意,只有一些模型提供程序支持此功能。
message = HumanMessage(content=[{"type": "text", "text": "describe the weather in this image"},{"type": "image_url", "image_url": {"url": image_url}},],
)
response = model.invoke([message])
print(response.content)
我们也可以传多个图片。
message = HumanMessage(content=[{"type": "text", "text": "are these two images the same?"},{"type": "image_url", "image_url": {"url": image_url}},{"type": "image_url", "image_url": {"url": image_url}},],
)
response = model.invoke([message])
print(response.content)
二、如何使用 mutimodal prompts
在这里,我们将描述一下怎么使用 prompt templates 来为模型格式化 multimodal imputs。
import base64
import httpximage_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")prompt = ChatPromptTemplate.from_messages([("system", "Describe the image provided"),("user",[{"type": "image_url","image_url": {"url": "data:image/jpeg;base64,{image_data}"},}],),]
)
我们也可以给模型传入多个图片。
prompt = ChatPromptTemplate.from_messages([("system", "compare the two pictures provided"),("user",[{"type": "image_url","image_url": {"url": "data:image/jpeg;base64,{image_data1}"},},{"type": "image_url","image_url": {"url": "data:image/jpeg;base64,{image_data2}"},},],),]
)chain = prompt | modelresponse = chain.invoke({"image_data1": image_data, "image_data2": image_data})
print(response.content)