当前位置: 首页> 教育> 就业 > 最小二乘算法的解

最小二乘算法的解

时间:2025/7/13 4:39:14来源:https://blog.csdn.net/xiaofeixia002X/article/details/140377600 浏览次数:0次

最小二乘法(Least Squares)是一种用于寻找线性回归模型的最佳拟合直线的标准方法。它通过最小化数据点与拟合直线之间的平方差来找到最佳拟合的线性模型。

线性回归模型

假设我们有一组数据点 (xi,yi),线性回归模型的目标是找到系数 w 和截距 b,使得线性方程:

y=wx+b

最佳拟合这些数据点。

最小二乘法的公式

最小二乘法的目标是最小化以下损失函数(平方误差和):
在这里插入图片描述通过求解这类优化问题,我们可以得到线性回归模型的参数。解析解可以使用矩阵运算来表示:

矩阵形式

在矩阵形式中,线性方程可以表示为:

Y=Xw

其中,X 是输入特征矩阵,Y 是目标值向量,w 是系数向量。

最小二乘法的解析解为:
在这里插入图片描述

代码示例

import numpy as np# 示例数据
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])  # 特征矩阵,包含截距项
y = np.array([6, 8, 9, 11])  # 目标值# 添加一个全为1的列以表示截距项
X = np.c_[np.ones(X.shape[0]), X]# 计算最小二乘解
w = np.linalg.inv(X.T @ X) @ X.T @ y
print(f"回归系数: {w}")# 拆分回归系数和截距
intercept = w[0]
coefficients = w[1:]
print(f"截距: {intercept}")
print(f"回归系数: {coefficients}")
关键字:最小二乘算法的解

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: