当前位置: 首页> 娱乐> 明星 > 给企业做网络推广工作怎么样_工装设计网站推荐_淘宝推广运营_设计公司取名字大全集

给企业做网络推广工作怎么样_工装设计网站推荐_淘宝推广运营_设计公司取名字大全集

时间:2025/7/9 22:55:26来源:https://blog.csdn.net/2301_76606951/article/details/144140848 浏览次数:0次
给企业做网络推广工作怎么样_工装设计网站推荐_淘宝推广运营_设计公司取名字大全集

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

 一 回顾ResNet模型

ResNet,即残差网络,是由微软研究院的Kaiming He及其合作者于2015年提出的一种深度卷积神经网络架构。该网络架构的核心创新在于引入了“残差连接”(residual connections)或“跳跃连接”(skip connections),这一结构的引入使得网络能够有效地训练深度极深的模型。该技术成功克服了传统深度网络在增加层数时所面临的梯度消失(vanishing gradients)或梯度爆炸(exploding gradients)的难题。

1. ResNet的核心思想

残差网络(ResNet)的核心理念在于采用残差学习策略以替代直接学习目标函数的方法。在该框架下,我们旨在学习一个映射函数H(x)。通过引入残差连接,ResNet并非直接对H(x)进行学习,而是转而学习残差函数F(x),即H(x)与输入x之间的差值,从而将学习目标转化为对F(x)的掌握。

该方法显著提升了网络的优化效率,即便是在恒等映射(即 H(x)=x)的情形下,亦可通过学习残差 F(x)=0来实现。残差连接的引入促进了信息与梯度的直接传递,从较浅层至较深层,有效缓解了深层网络训练过程中的困难。

 

2.ResNet的构成

残差网络(ResNet)的核心组件为残差块。该结构单元由一个或多个卷积层组成,其中输入数据通过快捷连接(short-cut connection)绕过卷积层,直接与输出相加。ResNet的典型架构可概述如下:

卷积层:残差块通常由两个或三个卷积层构成,其中3x3卷积核的应用尤为普遍。卷积操作后,通常会应用一个激活函数(如ReLU函数),以实现数据的非线性映射。

快捷连接:输入数据通过快捷连接直接与输出相加,绕过了中间的卷积层。这种设计有助于简化信息在深层网络中的传递路径。

ReLU激活函数:在卷积层之后,通常会施加ReLU激活函数,以增强网络的非线性表达能力。

二 通道注意力机制 SE-Net 

E-Net(Squeeze-and-Excitation Networks),由Hu等人于2018年提出,是一种针对卷积神经网络(CNN)的通道注意力机制。该机制通过引入自适应通道权重调整机制,显著提升了CNN在图像分类等任务中的性能。SE-Net模块的核心理念在于通过“压缩(Squeeze)”与“激励(Excitation)”操作,自动学习并赋予各通道以重要性权重,进而对特征图进行加权处理,使模型能够集中注意力于关键特征,同时抑制不相关特征。

SE-Net模块可嵌入至各类传统卷积神经网络架构中(如ResNet、Inception等),通过引入通道级注意力机制以增强网络性能。SE模块的基本原理是通过“全局信息池化”步骤捕捉全局特征信息,并据此动态调整各通道的特征图权重。SE模块的处理流程主要包括两个阶段:

1)压缩

在压缩过程中,空间特征提取(Spatial Excitation, SE)模块利用全局平均池化(Global Average Pooling, GAP)技术对各个通道的特征图进行聚合,以实现对全局特征的表征。设输入特征图为 X,其高度和宽度分别为 H 和 W,通道数为 C。通过执行全局平均池化,对每个通道的 H×W 特征图进行平均值计算,从而为每个通道提取出一个单一的标量值。

\mathbf{z_{c}}=\frac{1}{\mathrm{H\times W}}\sum_{\mathrm{i=1}}^{\mathrm{H}}\sum_{\mathrm{j=1}}^{\mathrm{W}}\mathrm{x_{ijc}} ,\quad\mathrm{c=1,2,...,C} 

2)激励

激励机制旨在通过全连接层学习各通道的重要性权重。本研究采用全局特征表示 z=[z1,z2,…,zC] 作为输入,通过两个全连接层(FC层)的处理,生成各通道的权重系数 s=[s1,s2,…,sC]。具体操作步骤如下:

首先,第一个全连接层接收输入 z,并通过激活函数(例如ReLU)获得隐层特征。

其次,第二个全连接层利用Sigmoid激活函数输出各通道的权重系数,以确保每个系数Sc介于0到1之间。

最终,通过Sigmoid激活函数处理后得到的通道注意力权重向量 s,可计算出各通道的重要性得分。

s_{\mathrm{c}}= \sigma\left(\mathrm{W}_{2}\cdot\mathrm{ReLU}(\mathrm{W}_{1}\cdot\mathrm{z})\right),\quad\mathrm{c}=1,2,...,\mathrm{C} 

3)重标定

最终,空间注意力(Spatial Enhancement,SE)模块通过应用学习得到的通道权重s对原始特征图的各个通道进行加权,实现特征重标定。设输入特征图为X,经由SE模块处理后,每个通道c的输出Y可表示为:

\mathrm{y_{c}=s_{c}\cdot x_{c},\quad c=1,2,...,C}

 其中,xc是输入特征图中通道 c的特征图,sc 是通道 c 的权重。通过这个重标定步骤,SE模块为每个通道分配一个权重,从而增强了对重要通道的关注,抑制了无关通道的影响。

三 ResNet+SE-Net 性能提升 

from keras import layers
from keras.layers import Input, Activation, BatchNormalization, Flatten, Dropout,Reshape
from keras.layers import Dense, Conv2D, MaxPooling2D, ZeroPadding2D, AveragePooling2D, GlobalAveragePooling2D
from keras.models import Model
import tensorflow as tf
from keras.layers import Add, UpSampling2D, Conv2D
from keras.layers import Multiply, Concatenatedef squeeze_excite_block(input_tensor, ratio=16):'''Squeeze-and-Excitation Block:param input_tensor: 输入张量:param ratio: 压缩比,控制激励层中间层的维度。通常选择较小的值,如16。:return: 加权后的张量'''channel_axis = -1  # 通道轴通常在最后一维channels = input_tensor.shape[channel_axis]  # 获取通道数# Squeeze:全局平均池化x = GlobalAveragePooling2D()(input_tensor)x = Reshape((1, 1, channels))(x)# Excite:两个全连接层生成通道权重x = Dense(channels // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(x)x = Dense(channels, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(x)# 将生成的权重与输入张量相乘x = Multiply()([input_tensor, x])return x
def identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersname_base = str(stage) + block + '_identity_block_'# 第一卷积层x = Conv2D(filters1, (1, 1), name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)# 第二卷积层x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)# 第三卷积层x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)# SE-Net通道注意力机制x = squeeze_excite_block(x)# 残差连接x = layers.add([x, input_tensor], name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return xdef conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersres_name_base = str(stage) + block + '_conv_block_res_'name_base = str(stage) + block + '_conv_block_'# 主卷积层x = Conv2D(filters1, (1, 1), strides=strides, name=name_base + 'conv1')(input_tensor)x = BatchNormalization(name=name_base + 'bn1')(x)x = Activation('relu', name=name_base + 'relu1')(x)x = Conv2D(filters2, kernel_size, padding='same', name=name_base + 'conv2')(x)x = BatchNormalization(name=name_base + 'bn2')(x)x = Activation('relu', name=name_base + 'relu2')(x)x = Conv2D(filters3, (1, 1), name=name_base + 'conv3')(x)x = BatchNormalization(name=name_base + 'bn3')(x)# 残差连接的卷积shortcut = Conv2D(filters3, (1, 1), strides=strides, name=res_name_base + 'conv')(input_tensor)shortcut = BatchNormalization(name=res_name_base + 'bn')(shortcut)# SE-Net通道注意力机制x = squeeze_excite_block(x)# 残差连接加和x = layers.add([x, shortcut], name=name_base + 'add')x = Activation('relu', name=name_base + 'relu4')(x)return x
def ResNet50(input_shape=[224,224,3], classes=4):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x = Flatten()(x)x = Dropout(0.5)(x)x = Dense(classes, activation='softmax', name='fc2')(x)model = Model(img_input, x, name='resnet50')return modelmodel = ResNet50()
model.summary()
Model: "resnet50"
__________________________________________________________________________________________________Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================input_1 (InputLayer)           [(None, 224, 224, 3  0           []                               )]                                                                zero_padding2d (ZeroPadding2D)  (None, 230, 230, 3)  0          ['input_1[0][0]']                conv1 (Conv2D)                 (None, 112, 112, 64  9472        ['zero_padding2d[0][0]']         )                                                                 bn_conv1 (BatchNormalization)  (None, 112, 112, 64  256         ['conv1[0][0]']                  )                                                                 activation (Activation)        (None, 112, 112, 64  0           ['bn_conv1[0][0]']               )                                                                 max_pooling2d (MaxPooling2D)   (None, 55, 55, 64)   0           ['activation[0][0]']             2a_conv_block_conv1 (Conv2D)   (None, 55, 55, 64)   4160        ['max_pooling2d[0][0]']          2a_conv_block_bn1 (BatchNormal  (None, 55, 55, 64)  256         ['2a_conv_block_conv1[0][0]']    ization)                                                                                         2a_conv_block_relu1 (Activatio  (None, 55, 55, 64)  0           ['2a_conv_block_bn1[0][0]']      n)                                                                                               2a_conv_block_conv2 (Conv2D)   (None, 55, 55, 64)   36928       ['2a_conv_block_relu1[0][0]']    2a_conv_block_bn2 (BatchNormal  (None, 55, 55, 64)  256         ['2a_conv_block_conv2[0][0]']    ization)                                                                                         2a_conv_block_relu2 (Activatio  (None, 55, 55, 64)  0           ['2a_conv_block_bn2[0][0]']      n)                                                                                               2a_conv_block_conv3 (Conv2D)   (None, 55, 55, 256)  16640       ['2a_conv_block_relu2[0][0]']    2a_conv_block_bn3 (BatchNormal  (None, 55, 55, 256)  1024       ['2a_conv_block_conv3[0][0]']    ization)                                                                                         global_average_pooling2d (Glob  (None, 256)         0           ['2a_conv_block_bn3[0][0]']      alAveragePooling2D)                                                                              reshape (Reshape)              (None, 1, 1, 256)    0           ['global_average_pooling2d[0][0]']                                dense (Dense)                  (None, 1, 1, 16)     4096        ['reshape[0][0]']                dense_1 (Dense)                (None, 1, 1, 256)    4096        ['dense[0][0]']                  2a_conv_block_res_conv (Conv2D  (None, 55, 55, 256)  16640      ['max_pooling2d[0][0]']          )                                                                                                multiply (Multiply)            (None, 55, 55, 256)  0           ['2a_conv_block_bn3[0][0]',      'dense_1[0][0]']                2a_conv_block_res_bn (BatchNor  (None, 55, 55, 256)  1024       ['2a_conv_block_res_conv[0][0]'] malization)                                                                                      2a_conv_block_add (Add)        (None, 55, 55, 256)  0           ['multiply[0][0]',               '2a_conv_block_res_bn[0][0]']   2a_conv_block_relu4 (Activatio  (None, 55, 55, 256)  0          ['2a_conv_block_add[0][0]']      n)                                                                                               2b_identity_block_conv1 (Conv2  (None, 55, 55, 64)  16448       ['2a_conv_block_relu4[0][0]']    D)                                                                                               2b_identity_block_bn1 (BatchNo  (None, 55, 55, 64)  256         ['2b_identity_block_conv1[0][0]']rmalization)                                                                                     2b_identity_block_relu1 (Activ  (None, 55, 55, 64)  0           ['2b_identity_block_bn1[0][0]']  ation)                                                                                           2b_identity_block_conv2 (Conv2  (None, 55, 55, 64)  36928       ['2b_identity_block_relu1[0][0]']D)                                                                                               2b_identity_block_bn2 (BatchNo  (None, 55, 55, 64)  256         ['2b_identity_block_conv2[0][0]']rmalization)                                                                                     2b_identity_block_relu2 (Activ  (None, 55, 55, 64)  0           ['2b_identity_block_bn2[0][0]']  ation)                                                                                           2b_identity_block_conv3 (Conv2  (None, 55, 55, 256)  16640      ['2b_identity_block_relu2[0][0]']D)                                                                                               2b_identity_block_bn3 (BatchNo  (None, 55, 55, 256)  1024       ['2b_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_1 (Gl  (None, 256)         0           ['2b_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_1 (Reshape)            (None, 1, 1, 256)    0           ['global_average_pooling2d_1[0][0]']                              dense_2 (Dense)                (None, 1, 1, 16)     4096        ['reshape_1[0][0]']              dense_3 (Dense)                (None, 1, 1, 256)    4096        ['dense_2[0][0]']                multiply_1 (Multiply)          (None, 55, 55, 256)  0           ['2b_identity_block_bn3[0][0]',  'dense_3[0][0]']                2b_identity_block_add (Add)    (None, 55, 55, 256)  0           ['multiply_1[0][0]',             '2a_conv_block_relu4[0][0]']    2b_identity_block_relu4 (Activ  (None, 55, 55, 256)  0          ['2b_identity_block_add[0][0]']  ation)                                                                                           2c_identity_block_conv1 (Conv2  (None, 55, 55, 64)  16448       ['2b_identity_block_relu4[0][0]']D)                                                                                               2c_identity_block_bn1 (BatchNo  (None, 55, 55, 64)  256         ['2c_identity_block_conv1[0][0]']rmalization)                                                                                     2c_identity_block_relu1 (Activ  (None, 55, 55, 64)  0           ['2c_identity_block_bn1[0][0]']  ation)                                                                                           2c_identity_block_conv2 (Conv2  (None, 55, 55, 64)  36928       ['2c_identity_block_relu1[0][0]']D)                                                                                               2c_identity_block_bn2 (BatchNo  (None, 55, 55, 64)  256         ['2c_identity_block_conv2[0][0]']rmalization)                                                                                     2c_identity_block_relu2 (Activ  (None, 55, 55, 64)  0           ['2c_identity_block_bn2[0][0]']  ation)                                                                                           2c_identity_block_conv3 (Conv2  (None, 55, 55, 256)  16640      ['2c_identity_block_relu2[0][0]']D)                                                                                               2c_identity_block_bn3 (BatchNo  (None, 55, 55, 256)  1024       ['2c_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_2 (Gl  (None, 256)         0           ['2c_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_2 (Reshape)            (None, 1, 1, 256)    0           ['global_average_pooling2d_2[0][0]']                              dense_4 (Dense)                (None, 1, 1, 16)     4096        ['reshape_2[0][0]']              dense_5 (Dense)                (None, 1, 1, 256)    4096        ['dense_4[0][0]']                multiply_2 (Multiply)          (None, 55, 55, 256)  0           ['2c_identity_block_bn3[0][0]',  'dense_5[0][0]']                2c_identity_block_add (Add)    (None, 55, 55, 256)  0           ['multiply_2[0][0]',             '2b_identity_block_relu4[0][0]']2c_identity_block_relu4 (Activ  (None, 55, 55, 256)  0          ['2c_identity_block_add[0][0]']  ation)                                                                                           3a_conv_block_conv1 (Conv2D)   (None, 28, 28, 128)  32896       ['2c_identity_block_relu4[0][0]']3a_conv_block_bn1 (BatchNormal  (None, 28, 28, 128)  512        ['3a_conv_block_conv1[0][0]']    ization)                                                                                         3a_conv_block_relu1 (Activatio  (None, 28, 28, 128)  0          ['3a_conv_block_bn1[0][0]']      n)                                                                                               3a_conv_block_conv2 (Conv2D)   (None, 28, 28, 128)  147584      ['3a_conv_block_relu1[0][0]']    3a_conv_block_bn2 (BatchNormal  (None, 28, 28, 128)  512        ['3a_conv_block_conv2[0][0]']    ization)                                                                                         3a_conv_block_relu2 (Activatio  (None, 28, 28, 128)  0          ['3a_conv_block_bn2[0][0]']      n)                                                                                               3a_conv_block_conv3 (Conv2D)   (None, 28, 28, 512)  66048       ['3a_conv_block_relu2[0][0]']    3a_conv_block_bn3 (BatchNormal  (None, 28, 28, 512)  2048       ['3a_conv_block_conv3[0][0]']    ization)                                                                                         global_average_pooling2d_3 (Gl  (None, 512)         0           ['3a_conv_block_bn3[0][0]']      obalAveragePooling2D)                                                                            reshape_3 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_3[0][0]']                              dense_6 (Dense)                (None, 1, 1, 32)     16384       ['reshape_3[0][0]']              dense_7 (Dense)                (None, 1, 1, 512)    16384       ['dense_6[0][0]']                3a_conv_block_res_conv (Conv2D  (None, 28, 28, 512)  131584     ['2c_identity_block_relu4[0][0]'])                                                                                                multiply_3 (Multiply)          (None, 28, 28, 512)  0           ['3a_conv_block_bn3[0][0]',      'dense_7[0][0]']                3a_conv_block_res_bn (BatchNor  (None, 28, 28, 512)  2048       ['3a_conv_block_res_conv[0][0]'] malization)                                                                                      3a_conv_block_add (Add)        (None, 28, 28, 512)  0           ['multiply_3[0][0]',             '3a_conv_block_res_bn[0][0]']   3a_conv_block_relu4 (Activatio  (None, 28, 28, 512)  0          ['3a_conv_block_add[0][0]']      n)                                                                                               3b_identity_block_conv1 (Conv2  (None, 28, 28, 128)  65664      ['3a_conv_block_relu4[0][0]']    D)                                                                                               3b_identity_block_bn1 (BatchNo  (None, 28, 28, 128)  512        ['3b_identity_block_conv1[0][0]']rmalization)                                                                                     3b_identity_block_relu1 (Activ  (None, 28, 28, 128)  0          ['3b_identity_block_bn1[0][0]']  ation)                                                                                           3b_identity_block_conv2 (Conv2  (None, 28, 28, 128)  147584     ['3b_identity_block_relu1[0][0]']D)                                                                                               3b_identity_block_bn2 (BatchNo  (None, 28, 28, 128)  512        ['3b_identity_block_conv2[0][0]']rmalization)                                                                                     3b_identity_block_relu2 (Activ  (None, 28, 28, 128)  0          ['3b_identity_block_bn2[0][0]']  ation)                                                                                           3b_identity_block_conv3 (Conv2  (None, 28, 28, 512)  66048      ['3b_identity_block_relu2[0][0]']D)                                                                                               3b_identity_block_bn3 (BatchNo  (None, 28, 28, 512)  2048       ['3b_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_4 (Gl  (None, 512)         0           ['3b_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_4 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_4[0][0]']                              dense_8 (Dense)                (None, 1, 1, 32)     16384       ['reshape_4[0][0]']              dense_9 (Dense)                (None, 1, 1, 512)    16384       ['dense_8[0][0]']                multiply_4 (Multiply)          (None, 28, 28, 512)  0           ['3b_identity_block_bn3[0][0]',  'dense_9[0][0]']                3b_identity_block_add (Add)    (None, 28, 28, 512)  0           ['multiply_4[0][0]',             '3a_conv_block_relu4[0][0]']    3b_identity_block_relu4 (Activ  (None, 28, 28, 512)  0          ['3b_identity_block_add[0][0]']  ation)                                                                                           3c_identity_block_conv1 (Conv2  (None, 28, 28, 128)  65664      ['3b_identity_block_relu4[0][0]']D)                                                                                               3c_identity_block_bn1 (BatchNo  (None, 28, 28, 128)  512        ['3c_identity_block_conv1[0][0]']rmalization)                                                                                     3c_identity_block_relu1 (Activ  (None, 28, 28, 128)  0          ['3c_identity_block_bn1[0][0]']  ation)                                                                                           3c_identity_block_conv2 (Conv2  (None, 28, 28, 128)  147584     ['3c_identity_block_relu1[0][0]']D)                                                                                               3c_identity_block_bn2 (BatchNo  (None, 28, 28, 128)  512        ['3c_identity_block_conv2[0][0]']rmalization)                                                                                     3c_identity_block_relu2 (Activ  (None, 28, 28, 128)  0          ['3c_identity_block_bn2[0][0]']  ation)                                                                                           3c_identity_block_conv3 (Conv2  (None, 28, 28, 512)  66048      ['3c_identity_block_relu2[0][0]']D)                                                                                               3c_identity_block_bn3 (BatchNo  (None, 28, 28, 512)  2048       ['3c_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_5 (Gl  (None, 512)         0           ['3c_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_5 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_5[0][0]']                              dense_10 (Dense)               (None, 1, 1, 32)     16384       ['reshape_5[0][0]']              dense_11 (Dense)               (None, 1, 1, 512)    16384       ['dense_10[0][0]']               multiply_5 (Multiply)          (None, 28, 28, 512)  0           ['3c_identity_block_bn3[0][0]',  'dense_11[0][0]']               3c_identity_block_add (Add)    (None, 28, 28, 512)  0           ['multiply_5[0][0]',             '3b_identity_block_relu4[0][0]']3c_identity_block_relu4 (Activ  (None, 28, 28, 512)  0          ['3c_identity_block_add[0][0]']  ation)                                                                                           3d_identity_block_conv1 (Conv2  (None, 28, 28, 128)  65664      ['3c_identity_block_relu4[0][0]']D)                                                                                               3d_identity_block_bn1 (BatchNo  (None, 28, 28, 128)  512        ['3d_identity_block_conv1[0][0]']rmalization)                                                                                     3d_identity_block_relu1 (Activ  (None, 28, 28, 128)  0          ['3d_identity_block_bn1[0][0]']  ation)                                                                                           3d_identity_block_conv2 (Conv2  (None, 28, 28, 128)  147584     ['3d_identity_block_relu1[0][0]']D)                                                                                               3d_identity_block_bn2 (BatchNo  (None, 28, 28, 128)  512        ['3d_identity_block_conv2[0][0]']rmalization)                                                                                     3d_identity_block_relu2 (Activ  (None, 28, 28, 128)  0          ['3d_identity_block_bn2[0][0]']  ation)                                                                                           3d_identity_block_conv3 (Conv2  (None, 28, 28, 512)  66048      ['3d_identity_block_relu2[0][0]']D)                                                                                               3d_identity_block_bn3 (BatchNo  (None, 28, 28, 512)  2048       ['3d_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_6 (Gl  (None, 512)         0           ['3d_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_6 (Reshape)            (None, 1, 1, 512)    0           ['global_average_pooling2d_6[0][0]']                              dense_12 (Dense)               (None, 1, 1, 32)     16384       ['reshape_6[0][0]']              dense_13 (Dense)               (None, 1, 1, 512)    16384       ['dense_12[0][0]']               multiply_6 (Multiply)          (None, 28, 28, 512)  0           ['3d_identity_block_bn3[0][0]',  'dense_13[0][0]']               3d_identity_block_add (Add)    (None, 28, 28, 512)  0           ['multiply_6[0][0]',             '3c_identity_block_relu4[0][0]']3d_identity_block_relu4 (Activ  (None, 28, 28, 512)  0          ['3d_identity_block_add[0][0]']  ation)                                                                                           4a_conv_block_conv1 (Conv2D)   (None, 14, 14, 256)  131328      ['3d_identity_block_relu4[0][0]']4a_conv_block_bn1 (BatchNormal  (None, 14, 14, 256)  1024       ['4a_conv_block_conv1[0][0]']    ization)                                                                                         4a_conv_block_relu1 (Activatio  (None, 14, 14, 256)  0          ['4a_conv_block_bn1[0][0]']      n)                                                                                               4a_conv_block_conv2 (Conv2D)   (None, 14, 14, 256)  590080      ['4a_conv_block_relu1[0][0]']    4a_conv_block_bn2 (BatchNormal  (None, 14, 14, 256)  1024       ['4a_conv_block_conv2[0][0]']    ization)                                                                                         4a_conv_block_relu2 (Activatio  (None, 14, 14, 256)  0          ['4a_conv_block_bn2[0][0]']      n)                                                                                               4a_conv_block_conv3 (Conv2D)   (None, 14, 14, 1024  263168      ['4a_conv_block_relu2[0][0]']    )                                                                 4a_conv_block_bn3 (BatchNormal  (None, 14, 14, 1024  4096       ['4a_conv_block_conv3[0][0]']    ization)                       )                                                                 global_average_pooling2d_7 (Gl  (None, 1024)        0           ['4a_conv_block_bn3[0][0]']      obalAveragePooling2D)                                                                            reshape_7 (Reshape)            (None, 1, 1, 1024)   0           ['global_average_pooling2d_7[0][0]']                              dense_14 (Dense)               (None, 1, 1, 64)     65536       ['reshape_7[0][0]']              dense_15 (Dense)               (None, 1, 1, 1024)   65536       ['dense_14[0][0]']               4a_conv_block_res_conv (Conv2D  (None, 14, 14, 1024  525312     ['3d_identity_block_relu4[0][0]'])                              )                                                                 multiply_7 (Multiply)          (None, 14, 14, 1024  0           ['4a_conv_block_bn3[0][0]',      )                                 'dense_15[0][0]']               4a_conv_block_res_bn (BatchNor  (None, 14, 14, 1024  4096       ['4a_conv_block_res_conv[0][0]'] malization)                    )                                                                 4a_conv_block_add (Add)        (None, 14, 14, 1024  0           ['multiply_7[0][0]',             )                                 '4a_conv_block_res_bn[0][0]']   4a_conv_block_relu4 (Activatio  (None, 14, 14, 1024  0          ['4a_conv_block_add[0][0]']      n)                             )                                                                 4b_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4a_conv_block_relu4[0][0]']    D)                                                                                               4b_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4b_identity_block_conv1[0][0]']rmalization)                                                                                     4b_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4b_identity_block_bn1[0][0]']  ation)                                                                                           4b_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4b_identity_block_relu1[0][0]']D)                                                                                               4b_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4b_identity_block_conv2[0][0]']rmalization)                                                                                     4b_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4b_identity_block_bn2[0][0]']  ation)                                                                                           4b_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4b_identity_block_relu2[0][0]']D)                             )                                                                 4b_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4b_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_8 (Gl  (None, 1024)        0           ['4b_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_8 (Reshape)            (None, 1, 1, 1024)   0           ['global_average_pooling2d_8[0][0]']                              dense_16 (Dense)               (None, 1, 1, 64)     65536       ['reshape_8[0][0]']              dense_17 (Dense)               (None, 1, 1, 1024)   65536       ['dense_16[0][0]']               multiply_8 (Multiply)          (None, 14, 14, 1024  0           ['4b_identity_block_bn3[0][0]',  )                                 'dense_17[0][0]']               4b_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_8[0][0]',             )                                 '4a_conv_block_relu4[0][0]']    4b_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4b_identity_block_add[0][0]']  ation)                         )                                                                 4c_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4b_identity_block_relu4[0][0]']D)                                                                                               4c_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4c_identity_block_conv1[0][0]']rmalization)                                                                                     4c_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4c_identity_block_bn1[0][0]']  ation)                                                                                           4c_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4c_identity_block_relu1[0][0]']D)                                                                                               4c_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4c_identity_block_conv2[0][0]']rmalization)                                                                                     4c_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4c_identity_block_bn2[0][0]']  ation)                                                                                           4c_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4c_identity_block_relu2[0][0]']D)                             )                                                                 4c_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4c_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_9 (Gl  (None, 1024)        0           ['4c_identity_block_bn3[0][0]']  obalAveragePooling2D)                                                                            reshape_9 (Reshape)            (None, 1, 1, 1024)   0           ['global_average_pooling2d_9[0][0]']                              dense_18 (Dense)               (None, 1, 1, 64)     65536       ['reshape_9[0][0]']              dense_19 (Dense)               (None, 1, 1, 1024)   65536       ['dense_18[0][0]']               multiply_9 (Multiply)          (None, 14, 14, 1024  0           ['4c_identity_block_bn3[0][0]',  )                                 'dense_19[0][0]']               4c_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_9[0][0]',             )                                 '4b_identity_block_relu4[0][0]']4c_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4c_identity_block_add[0][0]']  ation)                         )                                                                 4d_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4c_identity_block_relu4[0][0]']D)                                                                                               4d_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4d_identity_block_conv1[0][0]']rmalization)                                                                                     4d_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4d_identity_block_bn1[0][0]']  ation)                                                                                           4d_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4d_identity_block_relu1[0][0]']D)                                                                                               4d_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4d_identity_block_conv2[0][0]']rmalization)                                                                                     4d_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4d_identity_block_bn2[0][0]']  ation)                                                                                           4d_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4d_identity_block_relu2[0][0]']D)                             )                                                                 4d_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4d_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_10 (G  (None, 1024)        0           ['4d_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_10 (Reshape)           (None, 1, 1, 1024)   0           ['global_average_pooling2d_10[0][0]']                             dense_20 (Dense)               (None, 1, 1, 64)     65536       ['reshape_10[0][0]']             dense_21 (Dense)               (None, 1, 1, 1024)   65536       ['dense_20[0][0]']               multiply_10 (Multiply)         (None, 14, 14, 1024  0           ['4d_identity_block_bn3[0][0]',  )                                 'dense_21[0][0]']               4d_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_10[0][0]',            )                                 '4c_identity_block_relu4[0][0]']4d_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4d_identity_block_add[0][0]']  ation)                         )                                                                 4e_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4d_identity_block_relu4[0][0]']D)                                                                                               4e_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4e_identity_block_conv1[0][0]']rmalization)                                                                                     4e_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4e_identity_block_bn1[0][0]']  ation)                                                                                           4e_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4e_identity_block_relu1[0][0]']D)                                                                                               4e_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4e_identity_block_conv2[0][0]']rmalization)                                                                                     4e_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4e_identity_block_bn2[0][0]']  ation)                                                                                           4e_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4e_identity_block_relu2[0][0]']D)                             )                                                                 4e_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4e_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_11 (G  (None, 1024)        0           ['4e_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_11 (Reshape)           (None, 1, 1, 1024)   0           ['global_average_pooling2d_11[0][0]']                             dense_22 (Dense)               (None, 1, 1, 64)     65536       ['reshape_11[0][0]']             dense_23 (Dense)               (None, 1, 1, 1024)   65536       ['dense_22[0][0]']               multiply_11 (Multiply)         (None, 14, 14, 1024  0           ['4e_identity_block_bn3[0][0]',  )                                 'dense_23[0][0]']               4e_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_11[0][0]',            )                                 '4d_identity_block_relu4[0][0]']4e_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4e_identity_block_add[0][0]']  ation)                         )                                                                 4f_identity_block_conv1 (Conv2  (None, 14, 14, 256)  262400     ['4e_identity_block_relu4[0][0]']D)                                                                                               4f_identity_block_bn1 (BatchNo  (None, 14, 14, 256)  1024       ['4f_identity_block_conv1[0][0]']rmalization)                                                                                     4f_identity_block_relu1 (Activ  (None, 14, 14, 256)  0          ['4f_identity_block_bn1[0][0]']  ation)                                                                                           4f_identity_block_conv2 (Conv2  (None, 14, 14, 256)  590080     ['4f_identity_block_relu1[0][0]']D)                                                                                               4f_identity_block_bn2 (BatchNo  (None, 14, 14, 256)  1024       ['4f_identity_block_conv2[0][0]']rmalization)                                                                                     4f_identity_block_relu2 (Activ  (None, 14, 14, 256)  0          ['4f_identity_block_bn2[0][0]']  ation)                                                                                           4f_identity_block_conv3 (Conv2  (None, 14, 14, 1024  263168     ['4f_identity_block_relu2[0][0]']D)                             )                                                                 4f_identity_block_bn3 (BatchNo  (None, 14, 14, 1024  4096       ['4f_identity_block_conv3[0][0]']rmalization)                   )                                                                 global_average_pooling2d_12 (G  (None, 1024)        0           ['4f_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_12 (Reshape)           (None, 1, 1, 1024)   0           ['global_average_pooling2d_12[0][0]']                             dense_24 (Dense)               (None, 1, 1, 64)     65536       ['reshape_12[0][0]']             dense_25 (Dense)               (None, 1, 1, 1024)   65536       ['dense_24[0][0]']               multiply_12 (Multiply)         (None, 14, 14, 1024  0           ['4f_identity_block_bn3[0][0]',  )                                 'dense_25[0][0]']               4f_identity_block_add (Add)    (None, 14, 14, 1024  0           ['multiply_12[0][0]',            )                                 '4e_identity_block_relu4[0][0]']4f_identity_block_relu4 (Activ  (None, 14, 14, 1024  0          ['4f_identity_block_add[0][0]']  ation)                         )                                                                 5a_conv_block_conv1 (Conv2D)   (None, 7, 7, 512)    524800      ['4f_identity_block_relu4[0][0]']5a_conv_block_bn1 (BatchNormal  (None, 7, 7, 512)   2048        ['5a_conv_block_conv1[0][0]']    ization)                                                                                         5a_conv_block_relu1 (Activatio  (None, 7, 7, 512)   0           ['5a_conv_block_bn1[0][0]']      n)                                                                                               5a_conv_block_conv2 (Conv2D)   (None, 7, 7, 512)    2359808     ['5a_conv_block_relu1[0][0]']    5a_conv_block_bn2 (BatchNormal  (None, 7, 7, 512)   2048        ['5a_conv_block_conv2[0][0]']    ization)                                                                                         5a_conv_block_relu2 (Activatio  (None, 7, 7, 512)   0           ['5a_conv_block_bn2[0][0]']      n)                                                                                               5a_conv_block_conv3 (Conv2D)   (None, 7, 7, 2048)   1050624     ['5a_conv_block_relu2[0][0]']    5a_conv_block_bn3 (BatchNormal  (None, 7, 7, 2048)  8192        ['5a_conv_block_conv3[0][0]']    ization)                                                                                         global_average_pooling2d_13 (G  (None, 2048)        0           ['5a_conv_block_bn3[0][0]']      lobalAveragePooling2D)                                                                           reshape_13 (Reshape)           (None, 1, 1, 2048)   0           ['global_average_pooling2d_13[0][0]']                             dense_26 (Dense)               (None, 1, 1, 128)    262144      ['reshape_13[0][0]']             dense_27 (Dense)               (None, 1, 1, 2048)   262144      ['dense_26[0][0]']               5a_conv_block_res_conv (Conv2D  (None, 7, 7, 2048)  2099200     ['4f_identity_block_relu4[0][0]'])                                                                                                multiply_13 (Multiply)         (None, 7, 7, 2048)   0           ['5a_conv_block_bn3[0][0]',      'dense_27[0][0]']               5a_conv_block_res_bn (BatchNor  (None, 7, 7, 2048)  8192        ['5a_conv_block_res_conv[0][0]'] malization)                                                                                      5a_conv_block_add (Add)        (None, 7, 7, 2048)   0           ['multiply_13[0][0]',            '5a_conv_block_res_bn[0][0]']   5a_conv_block_relu4 (Activatio  (None, 7, 7, 2048)  0           ['5a_conv_block_add[0][0]']      n)                                                                                               5b_identity_block_conv1 (Conv2  (None, 7, 7, 512)   1049088     ['5a_conv_block_relu4[0][0]']    D)                                                                                               5b_identity_block_bn1 (BatchNo  (None, 7, 7, 512)   2048        ['5b_identity_block_conv1[0][0]']rmalization)                                                                                     5b_identity_block_relu1 (Activ  (None, 7, 7, 512)   0           ['5b_identity_block_bn1[0][0]']  ation)                                                                                           5b_identity_block_conv2 (Conv2  (None, 7, 7, 512)   2359808     ['5b_identity_block_relu1[0][0]']D)                                                                                               5b_identity_block_bn2 (BatchNo  (None, 7, 7, 512)   2048        ['5b_identity_block_conv2[0][0]']rmalization)                                                                                     5b_identity_block_relu2 (Activ  (None, 7, 7, 512)   0           ['5b_identity_block_bn2[0][0]']  ation)                                                                                           5b_identity_block_conv3 (Conv2  (None, 7, 7, 2048)  1050624     ['5b_identity_block_relu2[0][0]']D)                                                                                               5b_identity_block_bn3 (BatchNo  (None, 7, 7, 2048)  8192        ['5b_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_14 (G  (None, 2048)        0           ['5b_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_14 (Reshape)           (None, 1, 1, 2048)   0           ['global_average_pooling2d_14[0][0]']                             dense_28 (Dense)               (None, 1, 1, 128)    262144      ['reshape_14[0][0]']             dense_29 (Dense)               (None, 1, 1, 2048)   262144      ['dense_28[0][0]']               multiply_14 (Multiply)         (None, 7, 7, 2048)   0           ['5b_identity_block_bn3[0][0]',  'dense_29[0][0]']               5b_identity_block_add (Add)    (None, 7, 7, 2048)   0           ['multiply_14[0][0]',            '5a_conv_block_relu4[0][0]']    5b_identity_block_relu4 (Activ  (None, 7, 7, 2048)  0           ['5b_identity_block_add[0][0]']  ation)                                                                                           5c_identity_block_conv1 (Conv2  (None, 7, 7, 512)   1049088     ['5b_identity_block_relu4[0][0]']D)                                                                                               5c_identity_block_bn1 (BatchNo  (None, 7, 7, 512)   2048        ['5c_identity_block_conv1[0][0]']rmalization)                                                                                     5c_identity_block_relu1 (Activ  (None, 7, 7, 512)   0           ['5c_identity_block_bn1[0][0]']  ation)                                                                                           5c_identity_block_conv2 (Conv2  (None, 7, 7, 512)   2359808     ['5c_identity_block_relu1[0][0]']D)                                                                                               5c_identity_block_bn2 (BatchNo  (None, 7, 7, 512)   2048        ['5c_identity_block_conv2[0][0]']rmalization)                                                                                     5c_identity_block_relu2 (Activ  (None, 7, 7, 512)   0           ['5c_identity_block_bn2[0][0]']  ation)                                                                                           5c_identity_block_conv3 (Conv2  (None, 7, 7, 2048)  1050624     ['5c_identity_block_relu2[0][0]']D)                                                                                               5c_identity_block_bn3 (BatchNo  (None, 7, 7, 2048)  8192        ['5c_identity_block_conv3[0][0]']rmalization)                                                                                     global_average_pooling2d_15 (G  (None, 2048)        0           ['5c_identity_block_bn3[0][0]']  lobalAveragePooling2D)                                                                           reshape_15 (Reshape)           (None, 1, 1, 2048)   0           ['global_average_pooling2d_15[0][0]']                             dense_30 (Dense)               (None, 1, 1, 128)    262144      ['reshape_15[0][0]']             dense_31 (Dense)               (None, 1, 1, 2048)   262144      ['dense_30[0][0]']               multiply_15 (Multiply)         (None, 7, 7, 2048)   0           ['5c_identity_block_bn3[0][0]',  'dense_31[0][0]']               5c_identity_block_add (Add)    (None, 7, 7, 2048)   0           ['multiply_15[0][0]',            '5b_identity_block_relu4[0][0]']5c_identity_block_relu4 (Activ  (None, 7, 7, 2048)  0           ['5c_identity_block_add[0][0]']  ation)                                                                                           avg_pool (AveragePooling2D)    (None, 1, 1, 2048)   0           ['5c_identity_block_relu4[0][0]']flatten (Flatten)              (None, 2048)         0           ['avg_pool[0][0]']               dropout (Dropout)              (None, 2048)         0           ['flatten[0][0]']                fc2 (Dense)                    (None, 4)            8196        ['dropout[0][0]']                ==================================================================================================
Total params: 26,110,852
Trainable params: 26,057,732
Non-trainable params: 53,120
_______________________________________________________________________________________
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])epochs = 30history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,
)
Epoch 1/30
57/57 [==============================] - 120s 2s/step - loss: 1.6071 - accuracy: 0.5022 - val_loss: 1.6805 - val_accuracy: 0.3628
Epoch 2/30
57/57 [==============================] - 101s 2s/step - loss: 1.1572 - accuracy: 0.5973 - val_loss: 2.9043 - val_accuracy: 0.3628
Epoch 3/30
57/57 [==============================] - 103s 2s/step - loss: 1.0106 - accuracy: 0.6438 - val_loss: 3.5882 - val_accuracy: 0.2655
Epoch 4/30
57/57 [==============================] - 104s 2s/step - loss: 0.6960 - accuracy: 0.7345 - val_loss: 3.8824 - val_accuracy: 0.2920
Epoch 5/30
57/57 [==============================] - 103s 2s/step - loss: 0.6722 - accuracy: 0.8009 - val_loss: 1.9140 - val_accuracy: 0.3805
Epoch 6/30
57/57 [==============================] - 102s 2s/step - loss: 0.5720 - accuracy: 0.8009 - val_loss: 1.3526 - val_accuracy: 0.5133
Epoch 7/30
57/57 [==============================] - 103s 2s/step - loss: 0.5234 - accuracy: 0.8252 - val_loss: 1.6950 - val_accuracy: 0.6195
Epoch 8/30
57/57 [==============================] - 103s 2s/step - loss: 0.5409 - accuracy: 0.8186 - val_loss: 1.0905 - val_accuracy: 0.5752
Epoch 9/30
57/57 [==============================] - 102s 2s/step - loss: 0.4960 - accuracy: 0.8230 - val_loss: 1.0269 - val_accuracy: 0.5664
Epoch 10/30
57/57 [==============================] - 106s 2s/step - loss: 0.3521 - accuracy: 0.8761 - val_loss: 0.7942 - val_accuracy: 0.7965
Epoch 11/30
57/57 [==============================] - 103s 2s/step - loss: 0.2162 - accuracy: 0.9204 - val_loss: 0.9084 - val_accuracy: 0.7168
Epoch 12/30
57/57 [==============================] - 103s 2s/step - loss: 0.3159 - accuracy: 0.9093 - val_loss: 1.8489 - val_accuracy: 0.7611
Epoch 13/30
57/57 [==============================] - 102s 2s/step - loss: 0.2727 - accuracy: 0.8960 - val_loss: 2.2825 - val_accuracy: 0.7345
Epoch 14/30
57/57 [==============================] - 104s 2s/step - loss: 0.1902 - accuracy: 0.9381 - val_loss: 1.1050 - val_accuracy: 0.7257
Epoch 15/30
57/57 [==============================] - 105s 2s/step - loss: 0.2085 - accuracy: 0.9292 - val_loss: 0.3290 - val_accuracy: 0.9027
Epoch 16/30
57/57 [==============================] - 105s 2s/step - loss: 0.1697 - accuracy: 0.9358 - val_loss: 1.0470 - val_accuracy: 0.7965
Epoch 17/30
57/57 [==============================] - 106s 2s/step - loss: 0.1955 - accuracy: 0.9381 - val_loss: 9.2690 - val_accuracy: 0.3540
Epoch 18/30
57/57 [==============================] - 103s 2s/step - loss: 0.3337 - accuracy: 0.8960 - val_loss: 1.6920 - val_accuracy: 0.7699
Epoch 19/30
57/57 [==============================] - 103s 2s/step - loss: 0.1869 - accuracy: 0.9292 - val_loss: 9.7153 - val_accuracy: 0.3628
Epoch 20/30
57/57 [==============================] - 103s 2s/step - loss: 0.2506 - accuracy: 0.9049 - val_loss: 0.9142 - val_accuracy: 0.7876
Epoch 21/30
57/57 [==============================] - 107s 2s/step - loss: 0.1941 - accuracy: 0.9358 - val_loss: 0.7740 - val_accuracy: 0.8142
Epoch 22/30
57/57 [==============================] - 103s 2s/step - loss: 0.0971 - accuracy: 0.9690 - val_loss: 0.5248 - val_accuracy: 0.8230
Epoch 23/30
57/57 [==============================] - 104s 2s/step - loss: 0.0549 - accuracy: 0.9845 - val_loss: 2.8425 - val_accuracy: 0.6637
Epoch 24/30
57/57 [==============================] - 107s 2s/step - loss: 0.0251 - accuracy: 0.9934 - val_loss: 0.1835 - val_accuracy: 0.9292
Epoch 25/30
57/57 [==============================] - 110s 2s/step - loss: 0.0131 - accuracy: 1.0000 - val_loss: 0.2147 - val_accuracy: 0.9469
Epoch 26/30
57/57 [==============================] - 103s 2s/step - loss: 0.0043 - accuracy: 1.0000 - val_loss: 0.1484 - val_accuracy: 0.9469
Epoch 27/30
57/57 [==============================] - 106s 2s/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.1338 - val_accuracy: 0.9558
Epoch 28/30
57/57 [==============================] - 107s 2s/step - loss: 0.0013 - accuracy: 1.0000 - val_loss: 0.1428 - val_accuracy: 0.9469
Epoch 29/30
57/57 [==============================] - 108s 2s/step - loss: 6.1017e-04 - accuracy: 1.0000 - val_loss: 0.1412 - val_accuracy: 0.9469
Epoch 30/30
57/57 [==============================] - 111s 2s/step - loss: 5.0776e-04 - accuracy: 1.0000 - val_loss: 0.1457 - val_accuracy: 0.9381
# 获取实际训练轮数
actual_epochs = len(history.history['accuracy'])acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(actual_epochs)plt.figure(figsize=(12, 4))# 绘制准确率
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')# 绘制损失
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.show()

关键字:给企业做网络推广工作怎么样_工装设计网站推荐_淘宝推广运营_设计公司取名字大全集

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: