当前位置: 首页> 游戏> 手游 > 上海企业登记在线_网站服务器租用有什么好_谷歌推广一年多少钱_seo推广薪资

上海企业登记在线_网站服务器租用有什么好_谷歌推广一年多少钱_seo推广薪资

时间:2025/7/9 12:08:32来源:https://blog.csdn.net/jiangnanjunxiu/article/details/142963237 浏览次数:0次
上海企业登记在线_网站服务器租用有什么好_谷歌推广一年多少钱_seo推广薪资

最近在读扩散模型相关的几篇paper,中间有对概率论的大篇幅引用. 在DDPM的推导中,用到了中心极限定理.

中心极限定理是概率论和统计学中的一个核心定理,它揭示了大量独立随机变量之和的分布规律。本文将深入探讨中心极限定理的原理、意义、历史以及如何通过Python代码来验证这一重要定理。

中心极限定理的基本原理

中心极限定理的核心内容可以简述如下:

当从任意分布的总体中抽取足够大的样本时,这些样本的均值的分布将近似服从正态分布。这个正态分布的均值等于总体均值,方差等于总体方差除以样本容量。

换言之,不论原始总体服从何种分布,只要样本量足够大,样本均值的分布就会趋近于正态分布。这一发现极大地简化了统计推断过程。

数学表述

设随机变量 X 1 , X 2 , ⋯ , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相互独立,具有相同的数学期望 μ \mu μ 和方差 σ 2 \sigma^2 σ2,则随机变量之和的标准化形式:

Z n = ∑ i = 1 n X i − n μ n σ = X ˉ − μ σ / n Z_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} Zn=n σi=1nXinμ=σ/n Xˉμ

n → ∞ n \to \infty n 时, Z n Z_n Zn 的分布收敛于标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)

中心极限定理的意义

  1. 为统计推断提供理论基础,如参数估计、置信区间构建和假设检验。
  2. 解释了自然界中许多现象近似服从正态分布的原因。
  3. 简化了复杂系统的分析,使我们能够用正态分布来近似描述多个随机因素的综合效应。

历史发展

  • 1733年:棣莫弗(De Moivre)首次提出,研究了二项分布的正态近似。
  • 1812年:拉普拉斯(Laplace)推广了棣莫弗的结果。
  • 1901年:李雅普诺夫(Lyapunov)给出了中心极限定理的严格证明。
  • 20世纪:理论得到进一步发展和推广,形成了一类重要的极限定理。

Python代码实践

以下是一个使用Python验证中心极限定理的示例:

import numpy as np
import matplotlib.pyplot as pltnp.random.seed(0)# 参数设置
n_samples = 1000
n_experiments = 1000
sample_size = 30# 进行实验
sample_means = []
for _ in range(n_experiments):sample = np.random.exponential(scale=1.0, size=sample_size)sample_means.append(np.mean(sample))# 绘图
plt.figure(figsize=(10, 6))
plt.hist(sample_means, bins=30, density=True, alpha=0.7,color='blue', label='样本均值分布')mean = np.mean(sample_means)
std_dev = np.std(sample_means)
xmin, xmax = plt.xlim()x = np.linspace(xmin, xmax, 100)
normal_dist = (1/(std_dev * np.sqrt(2 * np.pi))) * \np.exp(-0.5 * ((x - mean) / std_dev) ** 2)
plt.plot(x, normal_dist, 'k', linewidth=2, label='正态分布曲线')plt.title('样本均值的抽样分布(中心极限定理演示)')
plt.xlabel('样本均值')
plt.ylabel('密度')
plt.legend()
plt.grid(True)
plt.show()

在这里插入图片描述

结果分析

从生成的图表中,我们可以观察到:

  1. 蓝色柱状图表示从指数分布中抽取样本后计算得到的样本均值分布。
  2. 黑色曲线代表理论正态分布。
  3. 尽管原始数据来自指数分布(非正态分布),但样本均值的分布仍然呈现出明显的钟形,与正态分布曲线高度吻合。
  4. 样本均值分布的中心接近1,这与指数分布的理论均值一致。
  5. 分布的形状与正态分布曲线非常接近,有力地验证了中心极限定理。

结论

通过这个Python实例,我们直观地展示了中心极限定理的核心内容:即使原始总体不服从正态分布,只要样本量足够大,样本均值的分布就会近似正态分布。这一性质在统计推断、质量控制、金融分析等诸多领域都有着广泛的应用。

理解并掌握中心极限定理,不仅能帮助我们更好地理解统计学的基本原理,还能在实际问题中做出更准确的推断和决策。无论是在学术研究还是实际应用中,中心极限定理都是一个强大而实用的工具。

关键字:上海企业登记在线_网站服务器租用有什么好_谷歌推广一年多少钱_seo推广薪资

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: