当前位置: 首页> 房产> 建材 > 推广链接点击器_一级造价工程师合格标准_网站开发流程图_商旅平台app下载

推广链接点击器_一级造价工程师合格标准_网站开发流程图_商旅平台app下载

时间:2025/7/15 2:05:38来源:https://blog.csdn.net/weixin_48941116/article/details/144141163 浏览次数:0次
推广链接点击器_一级造价工程师合格标准_网站开发流程图_商旅平台app下载

题目描述

给定一个 m x n 的矩阵 matrix 和一个目标值 target,请你编写一个函数来判断目标值 target 是否在矩阵中。

  • 每行的元素按升序排列。
  • 每列的元素按升序排列。

示例 1

输入

matrix = [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14, 17]
]
target = 5

输出

true

示例 2

输入

matrix = [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14, 17]
]
target = 20

输出

false

解题思路

1. 暴力法

最简单的做法是遍历整个矩阵,逐个元素进行比较,看是否等于 target。这种方法的时间复杂度是 O(m * n),其中 m 是矩阵的行数,n 是矩阵的列数。

2. 优化方法(从矩阵的角落开始)

考虑到矩阵的特点:每行和每列都是升序排列的,我们可以利用这一点来提高搜索效率。

一种常见的优化方法是从矩阵的右上角或者左下角开始搜索。这里我们选择从右上角开始:

  • 如果目标值等于当前位置的值,直接返回 true
  • 如果目标值小于当前位置的值,则可以排除当前列,因为该列的元素都大于当前位置的值,移动到当前行的左边(即向左移动)。
  • 如果目标值大于当前位置的值,则可以排除当前行,因为该行的元素都小于当前位置的值,移动到当前列的下方(即向下移动)。

这种方法的时间复杂度是 O(m + n),比暴力法更高效。

实现代码(右上角开始)

#include <stdio.h>
#include <stdbool.h>bool searchMatrix(int** matrix, int matrixSize, int* matrixColSize, int target) {int m = matrixSize; // 矩阵的行数int n = *matrixColSize; // 矩阵的列数int row = 0;int col = n - 1; // 从右上角开始while (row < m && col >= 0) {if (matrix[row][col] == target) {return true; // 找到目标值} else if (matrix[row][col] < target) {row++; // 目标大于当前值,向下移动} else {col--; // 目标小于当前值,向左移动}}return false; // 未找到目标值
}int main() {// 示例矩阵int matrix[4][4] = {{1, 4, 7, 11},{2, 5, 8, 12},{3, 6, 9, 16},{10, 13, 14, 17}};int matrixSize = 4;int matrixColSize = 4;int target = 5;// 使用动态数组传递矩阵int* matrixPtr[4];for (int i = 0; i < matrixSize; i++) {matrixPtr[i] = matrix[i];}bool result = searchMatrix(matrixPtr, matrixSize, &matrixColSize, target);if (result) {printf("Found %d in the matrix.\n", target);} else {printf("%d not found in the matrix.\n", target);}return 0;
}

解释

  1. 矩阵初始化

    • main 函数中,我们定义了一个 4x4 的静态二维数组 matrix,并将其转换为指针数组 matrixPtr,用于传递给 searchMatrix 函数。
  2. 搜索方法

    • searchMatrix 函数从矩阵的右上角开始搜索,通过比较当前值与目标值的大小来决定向下或向左移动。
    • 如果目标值等于当前元素,返回 true;如果目标值小于当前元素,向左移动;如果目标值大于当前元素,向下移动。
  3. 返回值

    • 如果在搜索过程中找到了目标值,返回 true;否则返回 false

时间复杂度和空间复杂度

  • 时间复杂度

    • 每次操作后,我们要么向下移动一行,要么向左移动一列。所以,最多需要 m + n 次操作,其中 m 是矩阵的行数,n 是矩阵的列数。因此时间复杂度是 O(m + n)
  • 空间复杂度

    • 只使用了常数额外空间,所以空间复杂度是 O(1)
关键字:推广链接点击器_一级造价工程师合格标准_网站开发流程图_商旅平台app下载

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: