当前位置: 首页> 新闻> 资讯 > 手机软件开发学什么_视觉设计工作室_2345网址导航主页_2345网址导航是病毒吗

手机软件开发学什么_视觉设计工作室_2345网址导航主页_2345网址导航是病毒吗

时间:2025/8/25 6:00:29来源:https://blog.csdn.net/shenhonglei1234/article/details/146136471 浏览次数:2次
手机软件开发学什么_视觉设计工作室_2345网址导航主页_2345网址导航是病毒吗

以下是当前主流的大模型训练与推理框架的全面汇总

在这里插入图片描述

以下是更新后包含 SGLang 的大模型训练与推理框架列表,并对分类和示例进行了优化:


一、通用深度学习推理框架

  1. TensorRT-LLM

    • 特点:NVIDIA推出的针对Transformer类模型的优化框架,支持多GPU分布式推理和低精度量化。
    • 示例:加速BERT、GPT-3等模型推理,集成Kernel融合和矩阵乘优化技术。
  2. ONNX Runtime

    • 特点:跨框架模型部署工具,支持ONNX格式模型的硬件无关优化。
    • 示例:将PyTorch或TensorFlow模型转换为ONNX格式后部署到CPU/GPU。
  3. OpenVINO

    • 特点:英特尔开发的跨平台推理工具,支持CPU/VPU/FPGA硬件加速。
    • 示例:图像分类模型(如ResNet)在英特尔CPU上的高效推理。
  4. FasterTransformer

    • 特点:NVIDIA优化的Transformer推理库,支持Tensor Core加速。
    • 示例:BERT和GPT模型在NVIDIA GPU上的低延迟推理。
  5. MNN

    • 特点:阿里巴巴推出的轻量级推理框架,支持移动端和边缘设备。
    • 示例:移动端图像识别模型的部署。

二、大语言模型(LLM)专用框架

  1. vLLM

    • 特点:基于PagedAttention技术的高吞吐量引擎,支持动态批处理。
    • 示例:部署Llama、GPT-4等模型,吞吐量比HuggingFace高10倍以上。
  2. HuggingFace TGI (Text Generation Inference)

    • 特点:支持多GPU扩展和量化方案,兼容HuggingFace模型库。
    • 示例:部署Falcon-180B或Llama 2-70B等万亿参数模型。
  3. DeepSpeed-Inference

    • 特点:微软开发的分布式推理框架,集成ZeRO优化器和3D并行技术。
    • 示例:千亿参数模型(如Megatron-Turing NLG)的多节点推理。
  4. Llama.cpp

    • 特点:纯C++实现的轻量级推理引擎,支持CPU端4-bit量化。
    • 示例:在MacBook上运行Llama-7B模型,无需GPU。
  5. LMDeploy

    • 特点:支持模型量化、服务化部署和性能监控。
    • 示例:百川智能系列模型的低资源部署。
  6. SGLang

    • 特点:面向复杂提示工程的推理优化框架,通过结构化生成语言(Structured Generation Language)提升多轮对话、分支逻辑等场景的效率。
    • 示例:处理需要嵌套条件判断的复杂提示(如多步骤数学推理),通过缓存中间结果减少重复计算,响应速度提升30%以上。

三、新兴框架与工具

  1. TensorFlow Serving

    • 特点:专为TensorFlow模型设计的服务化框架,支持多版本管理。
    • 示例:部署TensorFlow SavedModel格式的分类模型。
  2. Ollama

    • 特点:用户友好的本地LLM运行工具,支持一键启动模型。
    • 示例:在本地运行Mistral或Gemma模型。
  3. MLC-LLM

    • 特点:支持多种硬件后端(如WebGPU、Vulkan)。
    • 示例:在浏览器中运行量化后的语言模型。
  4. PowerInfer

    • 特点:基于稀疏激活模式的CPU-GPU混合推理框架。
    • 示例:在消费级GPU上高效运行大型模型。

四、量化与压缩工具

  1. bitsandbytes

    • 特点:支持8-bit和4-bit量化,与HuggingFace无缝集成。
    • 示例:将Llama-2模型量化为4-bit后部署。
  2. AWQ (Activation-aware Weight Quantization)

    • 特点:基于激活感知的权重量化算法,精度损失小。
    • 示例:量化OPT-175B模型并保持90%以上准确率。
  3. GPTQ

    • 特点:基于梯度信息的后训练量化方法。
    • 示例:将BERT模型压缩至2-bit仍保持高精度。

五、其他特色框架

  1. LightLLM

    • 特点:极简设计,专注于低资源环境下的推理优化。
  2. ScaleLLM

    • 特点:支持千卡集群的超大规模模型推理。
  3. Llamafile

    • 特点:将模型与运行时打包为单个可执行文件,便于分发。

常用示例场景

场景推荐框架优势
高吞吐量在线服务vLLM、TGI动态批处理、PagedAttention优化
复杂提示工程SGLang结构化生成、中间结果复用
边缘设备部署Llama.cpp、MNN低资源消耗、支持CPU推理
多GPU分布式推理DeepSpeed、TensorRT-LLM3D并行、高效显存管理
快速原型开发Ollama、Transformers易用性高、社区支持完善
量化压缩bitsandbytes、AWQ低精度量化、最小化精度损失

总结

当前主流框架超过23种(完整列表可参考),核心选择需结合以下因素:

  1. 硬件环境:GPU型号(如NVIDIA/AMD)、CPU架构、边缘设备类型。
  2. 模型类型:Transformer类模型优先选vLLM或FasterTransformer,轻量化模型可选Llama.cpp。
  3. 部署需求:服务化场景用TGI或TensorRT-LLM,本地开发用Ollama或LM Studio。

如需完整框架列表及技术对比,可进一步查阅 大模型推理框架总结。

关键字:手机软件开发学什么_视觉设计工作室_2345网址导航主页_2345网址导航是病毒吗

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: