当前位置: 首页> 科技> 能源 > 杭州专业程序开发公司_品牌策划咨询设计公司_短视频询盘获客系统_国产免费crm系统有哪些在线

杭州专业程序开发公司_品牌策划咨询设计公司_短视频询盘获客系统_国产免费crm系统有哪些在线

时间:2025/7/12 10:23:51来源:https://blog.csdn.net/March_A/article/details/146287568 浏览次数:0次
杭州专业程序开发公司_品牌策划咨询设计公司_短视频询盘获客系统_国产免费crm系统有哪些在线

一 主要区别

  • token 是使用分词器拆分后的最小单位不同的分词方式会导致同样的字符具有不同的token数量。如你好,可以拆分为【你、好】两个token, 【你好】一个token。

  • 同一个文本的 Token 数量可能远少于字符数(英文)或 接近字符数(中文)。


在自然语言处理中,token 是文本处理的基本单元,而字符是书写系统的最小单位。二者的关系取决于具体的分词方法:

  1. 字符级分词
    每个字符直接作为 token。对于中文“你好”(2个字符),会被分为 2个token(“你”和“好”)。

  2. 子词分词(如BPE、WordPiece)

    • 如果“你好”在训练数据中频繁出现,可能合并为 1个token

    • 否则会被拆分为 2个token(常见于多语言模型,如GPT系列)。

  3. 实际验证(以OpenAI为例)
    使用GPT-3/GPT-4的tiktoken分词器测试,“你好”通常被分为 2个token,因为中文字符常被单独编码。

总结

  • 在大多数情况下(尤其是多语言模型),“你好”对应 2个token

  • 特定中文优化模型可能合并为1个token,需具体测试分词器。

二 字符(Character)

定义
  • 字符是书写系统中的最小单位,代表一个可见的符号或控制符号。

  • 例如:

    • 英文:aB?空格 等。

    • 中文:(逗号)等。

    • 数字或符号:1$% 等。

  • 每个字符在计算机中通常对应一个编码(如 Unicode)。

特点
  • 原子性:字符不可再拆分。

  • 直观性:直接对应文本的视觉形态。

  • 长度固定:例如,“你好”包含 2 个字符。

例子
  • 句子 Hello, 世界! 的字符分解:

    H, e, l, l, o, ,,  , 世, 界, !

    共 10 个字符(包括空格和标点)

三 Token(词元)

定义
  • Token 是自然语言处理(NLP)中文本处理的基本单元,是模型输入的最小单位。

  • 如何生成 Token? 取决于分词方法(Tokenization):

    1. 词级别分词(Word-based)
      将文本按词语分割。例如:“我爱编程” → ["我", "爱", "编程"](3 tokens)。

    2. 子词分词(Subword-based)
      将复杂词拆分为常见子词。例如:“unhappy” → ["un", "happy"](2 tokens)。

    3. 字符级别分词(Character-based)
      每个字符直接作为 Token。例如:“你好” → ["你", "好"](2 tokens)。

特点
  • 灵活性:Token 的粒度可粗(词)可细(字符)。

  • 模型依赖性:不同模型使用不同的分词规则(如 GPT 用 BPE,BERT 用 WordPiece)。

  • 功能导向:Token 的目的是让模型高效学习和处理文本。

例子
  • 英文"ChatGPT is powerful!"
    使用子词分词(BPE)可能分解为:

["Chat", "G", "PT", " is", " powerful", "!"] → 6 tokens

中文“自然语言处理”
使用子词分词可能分解为:

["自然", "语言", "处理"] → 3 tokens

或者字符分词:

["自", "然", "语", "言", "处", "理"] → 6 tokens

四 Token 和字符的关系

特征字符(Character)Token
定义书写系统的最小单位NLP 处理的基本单元
拆分规则固定(按 Unicode 编码)灵活(由分词算法决定)
粒度绝对最小(不可再分)可粗(词)可细(字符或子词)
用途文本存储、显示模型训练、推理、文本分析
例子“A”“你”“1”“!”“Chat”“##GP”“你好”

五 如何计算 Token 数量?

  • 英文:通常 1 个单词 ≈ 1-2 个 Token。

  • 中文:通常 1 个汉字 ≈ 1-2 个 Token(取决于是否被合并为子词)。

  • 实际工具
    使用模型对应的分词器直接测试。例如:

    • OpenAI 的 tiktoken 库:

import tiktoken
enc = tiktoken.get_encoding("cl100k_base")  # GPT-4 的分词器
text = "你好"
print(len(enc.encode(text)))  # 输出 2(2个Token)

六 总结

  • 字符是固定的视觉单位,直接对应文本的书写形式。

  • Token 是灵活的逻辑单位,服务于模型的高效处理。

  • 同一个文本的 Token 数量可能远少于字符数(英文)或 接近字符数(中文)。

关键字:杭州专业程序开发公司_品牌策划咨询设计公司_短视频询盘获客系统_国产免费crm系统有哪些在线

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: