当前位置: 首页> 财经> 金融 > 淘宝网官方网站电脑版_想做一个网站怎么做_网站优化网站_沈阳关键词快照优化

淘宝网官方网站电脑版_想做一个网站怎么做_网站优化网站_沈阳关键词快照优化

时间:2025/8/27 10:38:18来源:https://blog.csdn.net/weixin_44253237/article/details/145888603 浏览次数:0次
淘宝网官方网站电脑版_想做一个网站怎么做_网站优化网站_沈阳关键词快照优化

文章目录

  • 前言
  • 一、class CVRP_Encoder(nn.Module):__init__(self, **model_params)
    • 函数功能
    • 函数代码
  • 二、class CVRP_Encoder(nn.Module):forward(self, depot_xy, node_xy_demand)
    • 函数功能
    • 函数代码
  • 三、class EncoderLayer(nn.Module):__init__(self, **model_params)
    • 函数功能
    • 函数代码
  • 四、class EncoderLayer(nn.Module):forward(self, input1)
    • 函数功能
    • 函数代码
  • 附录
    • 代码(全)


前言

  • class CVRP_Encoder
  • class EncoderLayer(nn.Module)

以上是CVRPModel.py的类

/home/tang/RL_exa/NCO_code-main/single_objective/LCH-Regret/Regret-POMO/CVRP/POMO/CVRPModel.py


一、class CVRP_Encoder(nn.Module):init(self, **model_params)

函数功能

该代码片段是 CVRP_Encoder 类的 init 构造函数。其主要功能是 ==初始化模型的参数 ==和 构建神经网络的层,用于解决 容量限制的车辆路径问题(CVRP)。

执行流程图链接
在这里插入图片描述

函数代码

    def __init__(self, **model_params):super().__init__()self.model_params = model_paramsembedding_dim = self.model_params['embedding_dim']encoder_layer_num = self.model_params['encoder_layer_num']self.embedding_depot = nn.Linear(2, embedding_dim)self.embedding_node = nn.Linear(3, embedding_dim)self.layers = nn.ModuleList([EncoderLayer(**model_params) for _ in range(encoder_layer_num)])

二、class CVRP_Encoder(nn.Module):forward(self, depot_xy, node_xy_demand)

函数功能

forward 方法是 CVRP_Encoder 类的一部分,主要功能是将仓库(depot)和客户节点(node)的位置和需求信息进行嵌入(embedding)并通过编码器进行处理。
它返回处理后的节点和仓库的嵌入表示,用于后续的模型推理。

执行流程图链接
在这里插入图片描述

函数代码

    def forward(self, depot_xy, node_xy_demand):# depot_xy.shape: (batch, 1, 2)# node_xy_demand.shape: (batch, problem, 3)embedded_depot = self.embedding_depot(depot_xy)# shape: (batch, 1, embedding)embedded_node = self.embedding_node(node_xy_demand)# shape: (batch, problem, embedding)out = torch.cat((embedded_depot, embedded_node), dim=1)# shape: (batch, problem+1, embedding)for layer in self.layers:out = layer(out)return out# shape: (batch, problem+1, embedding)

三、class EncoderLayer(nn.Module):init(self, **model_params)

函数功能

init 方法是 EncoderLayer 类的构造函数,主要功能是初始化编码器层的各个子组件。
设置多头注意力机制所需的权重矩阵和相关的正则化层、前馈网络等,以便在 forward 方法中执行实际的操作。

执行流程图链接
在这里插入图片描述

函数代码

    def __init__(self, **model_params):super().__init__()self.model_params = model_paramsembedding_dim = self.model_params['embedding_dim']head_num = self.model_params['head_num']qkv_dim = self.model_params['qkv_dim']self.Wq = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False)self.Wk = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False)self.Wv = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False)self.multi_head_combine = nn.Linear(head_num * qkv_dim, embedding_dim)self.add_n_normalization_1 = AddAndInstanceNormalization(**model_params)self.feed_forward = FeedForward(**model_params)self.add_n_normalization_2 = AddAndInstanceNormalization(**model_params)

四、class EncoderLayer(nn.Module):forward(self, input1)

函数功能

forward 方法是 EncoderLayer 类中的前向传播函数,主要功能是执行 多头自注意力机制前馈神经网络,并进行相应的 残差连接归一化
执行流程图链接
在这里插入图片描述

函数代码

    def forward(self, input1):# input1.shape: (batch, problem+1, embedding)head_num = self.model_params['head_num']q = reshape_by_heads(self.Wq(input1), head_num=head_num)k = reshape_by_heads(self.Wk(input1), head_num=head_num)v = reshape_by_heads(self.Wv(input1), head_num=head_num)# qkv shape: (batch, head_num, problem, qkv_dim)out_concat = multi_head_attention(q, k, v)# shape: (batch, problem, head_num*qkv_dim)multi_head_out = self.multi_head_combine(out_concat)# shape: (batch, problem, embedding)out1 = self.add_n_normalization_1(input1, multi_head_out)out2 = self.feed_forward(out1)out3 = self.add_n_normalization_2(out1, out2)return out3# shape: (batch, problem, embedding)

附录

代码(全)

########################################
# ENCODER
########################################class CVRP_Encoder(nn.Module):def __init__(self, **model_params):super().__init__()self.model_params = model_paramsembedding_dim = self.model_params['embedding_dim']encoder_layer_num = self.model_params['encoder_layer_num']self.embedding_depot = nn.Linear(2, embedding_dim)self.embedding_node = nn.Linear(3, embedding_dim)self.layers = nn.ModuleList([EncoderLayer(**model_params) for _ in range(encoder_layer_num)])def forward(self, depot_xy, node_xy_demand):# depot_xy.shape: (batch, 1, 2)# node_xy_demand.shape: (batch, problem, 3)embedded_depot = self.embedding_depot(depot_xy)# shape: (batch, 1, embedding)embedded_node = self.embedding_node(node_xy_demand)# shape: (batch, problem, embedding)out = torch.cat((embedded_depot, embedded_node), dim=1)# shape: (batch, problem+1, embedding)for layer in self.layers:out = layer(out)return out# shape: (batch, problem+1, embedding)class EncoderLayer(nn.Module):def __init__(self, **model_params):super().__init__()self.model_params = model_paramsembedding_dim = self.model_params['embedding_dim']head_num = self.model_params['head_num']qkv_dim = self.model_params['qkv_dim']self.Wq = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False)self.Wk = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False)self.Wv = nn.Linear(embedding_dim, head_num * qkv_dim, bias=False)self.multi_head_combine = nn.Linear(head_num * qkv_dim, embedding_dim)self.add_n_normalization_1 = AddAndInstanceNormalization(**model_params)self.feed_forward = FeedForward(**model_params)self.add_n_normalization_2 = AddAndInstanceNormalization(**model_params)def forward(self, input1):# input1.shape: (batch, problem+1, embedding) 364thead_num = self.model_params['head_num']q = reshape_by_heads(self.Wq(input1), head_num=head_num)k = reshape_by_heads(self.Wk(input1), head_num=head_num)v = reshape_by_heads(self.Wv(input1), head_num=head_num)# qkv shape: (batch, head_num, problem, qkv_dim)out_concat = multi_head_attention(q, k, v)# shape: (batch, problem, head_num*qkv_dim)multi_head_out = self.multi_head_combine(out_concat)# shape: (batch, problem, embedding)out1 = self.add_n_normalization_1(input1, multi_head_out)out2 = self.feed_forward(out1)out3 = self.add_n_normalization_2(out1, out2)return out3# shape: (batch, problem, embedding)
关键字:淘宝网官方网站电脑版_想做一个网站怎么做_网站优化网站_沈阳关键词快照优化

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: