当前位置: 首页> 财经> 金融 > 设计自学网_微信小程序开发大赛_nba季后赛最新排名_亿驱动力竞价托管

设计自学网_微信小程序开发大赛_nba季后赛最新排名_亿驱动力竞价托管

时间:2025/8/11 15:25:08来源:https://blog.csdn.net/weixin_42849849/article/details/147167633 浏览次数:0次
设计自学网_微信小程序开发大赛_nba季后赛最新排名_亿驱动力竞价托管

三维凹多面体分解为凸多面体的MATLAB实现

要将一个面数小于10的凹多面体分解为多个凸多面体,我们可以使用凸分解算法。以下是MATLAB实现方案:

方法概述

  1. 表示凹多面体:使用顶点和面列表表示输入的多面体
  2. 检测凹性:通过计算面法线和顶点位置关系确定凹边
  3. 分解策略:使用增量式凸分解或基于凹边的分割方法
  4. 实现分解:通过添加切割平面将凹多面体分割为凸部分

MATLAB代码实现

function convexParts = decomposeConcavePolyhedron(vertices, faces)% 检查输入多面体是否是凹的if isConvex(vertices, faces)convexParts = {vertices};return;end% 初始化凸部分集合convexParts = {};% 获取凹边concaveEdges = findConcaveEdges(vertices, faces);% 如果没有找到凹边,说明已经是凸的if isempty(concaveEdges)convexParts = {vertices};return;end% 选择第一个凹边进行分割edge = concaveEdges(1,:);% 找到分割平面[cutPlane, connectedFaces] = findCuttingPlane(vertices, faces, edge);% 使用分割平面将多面体分成两部分[vertices1, faces1, vertices2, faces2] = splitPolyhedron(vertices, faces, cutPlane);% 递归分解两个部分convexParts1 = decomposeConcavePolyhedron(vertices1, faces1);convexParts2 = decomposeConcavePolyhedron(vertices2, faces2);% 合并结果convexParts = [convexParts1, convexParts2];
endfunction isConvex = isConvex(vertices, faces)% 计算每个面的法向量和中心点normals = zeros(length(faces), 3);centers = zeros(length(faces), 3);for i = 1:length(faces)faceVertices = vertices(faces{i}, :);v1 = faceVertices(2,:) - faceVertices(1,:);v2 = faceVertices(3,:) - faceVertices(1,:);normals(i,:) = cross(v1, v2);normals(i,:) = normals(i,:) / norm(normals(i,:));centers(i,:) = mean(faceVertices, 1);end% 检查所有顶点是否在所有面的同一侧isConvex = true;for i = 1:length(faces)for j = 1:size(vertices, 1)if all(j ~= faces{i}) % 不检查当前面的顶点vec = vertices(j,:) - centers(i,:);if dot(vec, normals(i,:)) < -1e-6isConvex = false;return;endendendend
endfunction concaveEdges = findConcaveEdges(vertices, faces)% 找到所有边edges = [];for i = 1:length(faces)face = faces{i};for j = 1:length(face)v1 = face(j);v2 = face(mod(j, length(face)) + 1);edges = [edges; sort([v1, v2])];endendedges = unique(edges, 'rows');% 检查每条边是否是凹的concaveEdges = [];for i = 1:size(edges, 1)edge = edges(i,:);adjacentFaces = findAdjacentFaces(faces, edge);if length(adjacentFaces) == 2% 计算两个相邻面的法向量face1 = faces{adjacentFaces(1)};face2 = faces{adjacentFaces(2)};v1_1 = vertices(face1(2),:) - vertices(face1(1),:);v1_2 = vertices(face1(3),:) - vertices(face1(1),:);normal1 = cross(v1_1, v1_2);normal1 = normal1 / norm(normal1);v2_1 = vertices(face2(2),:) - vertices(face2(1),:);v2_2 = vertices(face2(3),:) - vertices(face2(1),:);normal2 = cross(v2_1, v2_2);normal2 = normal2 / norm(normal2);% 计算二面角dihedralAngle = atan2(norm(cross(normal1, normal2)), dot(normal1, normal2));% 如果二面角大于180度(π弧度),则是凹边if dihedralAngle > pi - 1e-6concaveEdges = [concaveEdges; edge];endendend
endfunction adjacentFaces = findAdjacentFaces(faces, edge)% 找到共享给定边的面adjacentFaces = [];for i = 1:length(faces)face = faces{i};for j = 1:length(face)v1 = face(j);v2 = face(mod(j, length(face)) + 1);if (v1 == edge(1) && v2 == edge(2)) || (v1 == edge(2) && v2 == edge(1))adjacentFaces = [adjacentFaces, i];break;endendend
endfunction [cutPlane, connectedFaces] = findCuttingPlane(vertices, faces, edge)% 简化方法:使用垂直于凹边并通过中点的平面% 实际应用中可能需要更复杂的策略v1 = vertices(edge(1),:);v2 = vertices(edge(2),:);midpoint = (v1 + v2) / 2;edgeVector = v2 - v1;% 找到与凹边相邻的面adjacentFaces = findAdjacentFaces(faces, edge);% 计算两个相邻面的法向量face1 = faces{adjacentFaces(1)};face2 = faces{adjacentFaces(2)};% 计算面法线v1_1 = vertices(face1(2),:) - vertices(face1(1),:);v1_2 = vertices(face1(3),:) - vertices(face1(1),:);normal1 = cross(v1_1, v1_2);normal1 = normal1 / norm(normal1);v2_1 = vertices(face2(2),:) - vertices(face2(1),:);v2_2 = vertices(face2(3),:) - vertices(face2(1),:);normal2 = cross(v2_1, v2_2);normal2 = normal2 / norm(normal2);% 切割平面法线是两个面法线的平均cutNormal = normal1 + normal2;cutNormal = cutNormal / norm(cutNormal);% 确保切割平面垂直于凹边cutNormal = cross(cutNormal, edgeVector);cutNormal = cutNormal / norm(cutNormal);% 创建平面方程: ax + by + cz + d = 0d = -dot(cutNormal, midpoint);cutPlane = [cutNormal, d];connectedFaces = adjacentFaces;
endfunction [vertices1, faces1, vertices2, faces2] = splitPolyhedron(vertices, faces, plane)% 简化实现:实际需要更复杂的几何操作% 这里只是一个框架,实际实现需要处理:% 1. 找到平面与多面体的交线% 2. 将多面体分成两部分% 3. 为每部分创建新的顶点和面列表% 由于实现复杂,这里仅返回原始多面体作为示例% 实际应用中应考虑使用现有的计算几何库或更完整的实现vertices1 = vertices;faces1 = faces;vertices2 = vertices;faces2 = faces;warning('Simplified implementation - actual splitting not performed');
end

使用示例

% 定义一个简单的凹多面体(例如一个凹陷的立方体)
vertices = [0 0 0;2 0 0;2 2 0;0 2 0;0 0 2;2 0 2;1 1 1;  % 凹陷顶点0 2 2
];faces = {[1 2 3 4],   % 底面[1 2 6 5],   % 前面[2 3 7 6],   % 右侧面(凹面)[3 4 8 7],   % 后面[4 1 5 8],   % 左侧面[5 6 7 8]    % 顶面
};% 执行分解
convexParts = decomposeConcavePolyhedron(vertices, faces);% 可视化结果
figure;
hold on;
axis equal;
grid on;
view(3);colors = lines(length(convexParts));
for i = 1:length(convexParts)verts = convexParts{i};% 这里需要根据分解后的顶点重建面,简化示例中省略% 实际应用中需要正确处理面信息if size(verts, 1) > 0plot3(verts(:,1), verts(:,2), verts(:,3), 'o', 'Color', colors(i,:));k = convhull(verts(:,1), verts(:,2), verts(:,3));trisurf(k, verts(:,1), verts(:,2), verts(:,3), 'FaceColor', colors(i,:), 'FaceAlpha', 0.5);end
end
title('凹多面体分解为凸多面体');

注意事项

  1. 上述代码是一个框架实现,实际的分割操作(splitPolyhedron函数)需要更复杂的几何计算。
  2. 对于生产环境,建议考虑使用专业的计算几何库,如CGAL的MATLAB接口。
  3. 分解结果的质量取决于分割平面的选择策略。
  4. 对于面数小于10的多面体,这种递归方法通常是有效的。

更可靠的替代方案

对于实际应用,可以考虑以下替代方案:

  1. 使用MATLAB的boundary函数或convhull函数进行凸包计算
  2. 将数据导出到专业3D建模软件进行分解
  3. 使用CGAL库的凸分解算法并通过MEX接口集成到MATLAB中

这个实现提供了基本框架,但可能需要根据具体应用场景进行调整和完善。


资料

CvxNet: Learnable Convex Decomposition (CVPR 2020 论文)
matlab几何基础

关键字:设计自学网_微信小程序开发大赛_nba季后赛最新排名_亿驱动力竞价托管

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: