当前位置: 首页> 健康> 养生 > seo优化标签_大型网站制作公司飞数_学推广网络营销去哪里_好用搜索引擎排名

seo优化标签_大型网站制作公司飞数_学推广网络营销去哪里_好用搜索引擎排名

时间:2025/9/1 12:52:24来源:https://blog.csdn.net/Srlua/article/details/144219766 浏览次数:0次
seo优化标签_大型网站制作公司飞数_学推广网络营销去哪里_好用搜索引擎排名


✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨

🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。

我是Srlua小谢,在这里我会分享我的知识和经验。🎥

希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。🔮

记得先点赞👍后阅读哦~ 👏👏

📘📚 所属专栏:传知代码论文复现

欢迎访问我的主页:Srlua小谢 获取更多信息和资源。✨✨🌙🌙

​​

​​

目录

概述

模型讲解

演示效果

核心逻辑

使用方式

部署方式

参考文献


本文所有资源均可在该地址处获取。

概述

图卷积网络(Graph Convolution Network,GCN)已经广泛的应用于推荐系统,基于GCN的协同过滤算法(例如NGCF)缺少消融研究,此模型对NGCF进行了消融实验并提出了轻量化卷积网络。

传统的GCN推荐模型(以NGCF为例)


其中的线性变换和非线性激活函数导致模型庞大,速度很慢,难于理解。
通过消融实验,去掉线性变换W和非线性激活函数σ,得到以下结果:


可以看到,去掉fn的recall和ndcg在两个常用数据集上的效果更好。
本模型的优势在于,轻量化了NGCF模型,在参数更小,速度更快的基础上,还提升了性能。

模型讲解


模型集合了Item和User的邻居信息,切只保留这部分信息,通过多层的GCN,最后求均值,得到了最终的u、i向量,最后进行Prediction。
模型公式:


目标函数:

演示效果


其中precision、recall、ndcg为模型评判标准,epoch为迭代次数(可改参数)、loss为损失,Sample为节点覆盖率。

核心逻辑

核心代码逻辑:

class LightGCN(BasicModel):def __init__(self,config:dict,dataset:BasicDataset):super(LightGCN, self).__init__()self.config = configself.dataset : dataloader.BasicDataset = datasetself.__init_weight()self.attention_layer = AttentionLayer(input_dim=64)self.mlp = MLP(input_dim=64)
#        self.contrast = Contrast(64, 0.5, 0.5)def __init_weight(self):self.num_users  = self.dataset.n_usersself.num_items  = self.dataset.m_itemsself.latent_dim = self.config['latent_dim_rec']self.n_layers = self.config['lightGCN_n_layers']self.keep_prob = self.config['keep_prob']self.A_split = self.config['A_split']self.embedding_user = torch.nn.Embedding(num_embeddings=self.num_users, embedding_dim=self.latent_dim)self.embedding_item = torch.nn.Embedding(num_embeddings=self.num_items, embedding_dim=self.latent_dim)if self.config['pretrain'] == 0:#nn.init.xavier_uniform_(self.embedding_user.weight, gain=1)#nn.init.xavier_uniform_(self.embedding_item.weight, gain=1)#print('use xavier initilizer')# random normal init seems to be a better choice when lightGCN actually don't use any non-linear activation functionnn.init.normal_(self.embedding_user.weight, std=0.1)nn.init.normal_(self.embedding_item.weight, std=0.1)world.cprint('use NORMAL distribution initilizer')else:self.embedding_user.weight.data.copy_(torch.from_numpy(self.config['user_emb']))self.embedding_item.weight.data.copy_(torch.from_numpy(self.config['item_emb']))print('use pretarined data')self.f = nn.Sigmoid()self.Graph = self.dataset.getSparseGraph()print(f"lgn is already to go(dropout:{self.config['dropout']})")# print("save_txt")

核心逻辑就是去掉传统图卷积中的非线性激活函数和线性变换,轻量化了模型,只保留了图的语义信息,目标函数选择了BPRLOSS。

使用方式


1.首先在/data文件中导入items和user数据,运行data_init.py文件进行数据初始化
2.


在parse.py中修改模型参数
3.运行main.py

部署方式

python3.8即可,拥有pytorch环境
搭建环境

 pip install -r requirements.txt

参考文献

SIGIR 2020. Xiangnan He, Kuan Deng ,Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang(2020). LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation, Paper in arXiv.

参考代码:

https://github.com/kuandeng/LightGCN

​​

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

关键字:seo优化标签_大型网站制作公司飞数_学推广网络营销去哪里_好用搜索引擎排名

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: