当前位置: 首页> 科技> IT业 > [NOIP2009 提高组] 最优贸易(含代码题解)

[NOIP2009 提高组] 最优贸易(含代码题解)

时间:2025/9/5 2:19:08来源:https://blog.csdn.net/weixin_56431011/article/details/140564862 浏览次数:0次

[NOIP2009 提高组] 最优贸易

题目描述

C C C 国有 n n n 个大城市和 m m m 条道路,每条道路连接这 n n n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 m m m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 1 1 条。

C C C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。

商人阿龙来到 C C C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C C C n n n 个城市的标号从 1 ∼ n 1\sim n 1n,阿龙决定从 1 1 1 号城市出发,并最终在 n n n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n n n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C C C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。

假设 C C C 国有 5 5 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。

假设 1 ∼ n 1\sim n 1n 号城市的水晶球价格分别为 4 , 3 , 5 , 6 , 1 4,3,5,6,1 4,3,5,6,1

阿龙可以选择如下一条线路: 1 → 2 → 3 → 5 1\to2\to3\to5 1235,并在 2 2 2 号城市以 3 3 3 的价格买入水晶球,在 3 3 3 号城市以 5 5 5 的价格卖出水晶球,赚取的旅费数为 2 2 2

阿龙也可以选择如下一条线路: 1 → 4 → 5 → 4 → 5 1\to4\to5\to4\to5 14545,并在第 1 1 1 次到达 5 5 5 号城市时以 1 1 1 的价格买入水晶球,在第 2 2 2 次到达 4 4 4 号城市时以 6 6 6 的价格卖出水晶球,赚取的旅费数为 5 5 5

现在给出 n n n 个城市的水晶球价格, m m m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。

输入格式

第一行包含 2 2 2 个正整数 n n n m m m,中间用一个空格隔开,分别表示城市的数目和道路的数目。

第二行 n n n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n n n 个城市的商品价格。

接下来 m m m 行,每行有 3 3 3 个正整数 x , y , z x,y,z x,y,z,每两个整数之间用一个空格隔开。如果 z = 1 z=1 z=1,表示这条道路是城市 x x x 到城市 y y y 之间的单向道路;如果 z = 2 z=2 z=2,表示这条道路为城市 x x x 和城市 y y y 之间的双向道路。

输出格式

一个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 0 0 0

样例 #1

样例输入 #1

5 5 
4 3 5 6 1 
1 2 1 
1 4 1 
2 3 2 
3 5 1 
4 5 2

样例输出 #1

5

提示

【数据范围】

输入数据保证 1 1 1 号城市可以到达 n n n 号城市。

对于 10 % 10\% 10% 的数据, 1 ≤ n ≤ 6 1\leq n\leq 6 1n6

对于 30 % 30\% 30% 的数据, 1 ≤ n ≤ 100 1\leq n\leq 100 1n100

对于 50 % 50\% 50% 的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 100000 1\leq n\leq 100000 1n100000 1 ≤ m ≤ 500000 1\leq m\leq 500000 1m500000 1 ≤ x , y ≤ n 1\leq x,y\leq n 1x,yn 1 ≤ z ≤ 2 1\leq z\leq 2 1z2,$1\leq $ 各城市的编号 ≤ n \leq n n

水晶球价格 ≤ 100 \leq 100 100

题目来源

NOIP 2009 提高组 第三题(洛谷)

题解

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;int n, m, d[maxn*3], inq[maxn*3];
vector<pair<int, int>> G[maxn*3];#define t(x,i) (x+i*n)  // t(x,i) 表示第i层的x
// 建立x->y边的函数
#define add(x, y) G[t(x,0)].push_back({t(y,0), 0}), G[t(x,1)].push_back({t(y,1),0}), G[t(x,2)].push_back({t(y,2),0})void spfa(int s) {for(int i = 1; i <= n*3; i++) d[i] = INT_MIN; // 初始化所有节点距离为最小值d[s] = 0; queue<int> Q; inq[s] = true; Q.push(s);while(!Q.empty()) {int x = Q.front(); Q.pop(); inq[x] = false;for(auto [v, len] : G[x]) // 遍历当前节点的所有邻接节点if(d[v] < d[x] + len) {d[v] = d[x] + len;if(!inq[v]) { Q.push(v); inq[v] = true; }} }
}int main() {ios_base::sync_with_stdio(0); cin.tie(0); // 加速cin, coutcin >> n >> m;for(int i = 1, v; i <= n; ++i) {cin >> v;G[t(i,0)].push_back({t(i,1), -v}); // 从未买入状态到买入状态,代价为负的价格G[t(i,1)].push_back({t(i,2), v});  // 从买入状态到卖出状态,获得正的价格}for(int i = 1, x, y, z; i <= m; ++i) {cin >> x >> y >> z; add(x, y);if(z == 2) add(y, x); // 如果是双向边,则需要加两次}spfa(t(1,0)); // 从起点状态开始运行SPFAcout << d[t(n,2)] << endl; // 输出最大利润return 0;
}
关键字:[NOIP2009 提高组] 最优贸易(含代码题解)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: