当前位置: 首页> 文旅> 艺术 > 68design_设计手机界面的网站_乐事薯片软文推广_网络营销知名企业

68design_设计手机界面的网站_乐事薯片软文推广_网络营销知名企业

时间:2025/8/26 21:50:54来源:https://blog.csdn.net/qq_37372909/article/details/144540027 浏览次数:0次
68design_设计手机界面的网站_乐事薯片软文推广_网络营销知名企业

一.背景

     还是为公司搭建开源的安全管理平台为目的,逐步探索。先找到了开源的安全帽识别的项目,之前文章学习了怎么简单运行。本次学习怎么去执行模型训练?

二.环境准备

1.准备Python、Pytorch的环境

参照我之前的文章。在windows系统用Anaconda搭建运行PyTorch识别安全帽项目的环境-CSDN博客

2.准备vscode

参考我之前的文章。

vscode(Visual Studio Code)的安装及汉化-CSDN博客

3.我机器的配置情况

CPU:12th Gen Intel(R) Core(TM) i7-12700   2.10 GHz

内存:16G

显卡:NVIDIA GeForce GT 730

没有GPU(我之前了解到PyTorch要区分是否使用GPU的版本,我这里虽然有独立显卡,但是没有使用支持GPU的版本)

三.执行训练的过程

1.vscode打开工程

2.运行model.py

3.训练的情况

执行了7.42个小时。日志如下:

D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main> activateD:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main>conda.bat activate  
PS D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main> conda activate myenv
PS D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main> & C:/Users/Dell/.conda/envs/myenv/python.exe d:/zsp/works/temp/20241119-zsp-helmet/Safety-Helmet-Detection-main/model/model.py
New https://pypi.org/project/ultralytics/8.3.50 available 😃 Update with 'pip install -U ultralytics'
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)
engine\trainer: task=detect, mode=train, model=yolov8n.pt, data=data.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train16, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train16
Overriding model.yaml nc=80 with nc=3from  n    params  module                                       arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]4                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]6                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]22        [15, 18, 21]  1    751897  ultralytics.nn.modules.head.Detect           [3, [64, 128, 256]]
Model summary: 225 layers, 3,011,433 parameters, 3,011,417 gradients, 8.2 GFLOPsTransferred 319/355 items from pretrained weights
Freezing layer 'model.22.dfl.conv.weight'
train: Scanning D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main\data\labels.cache... 5000 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00<?, ?it/s]
val: Scanning D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main\data\labels.cache... 5000 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00<?, ?it/s]
Plotting labels to runs\detect\train16\labels.jpg... 
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... 
optimizer: AdamW(lr=0.001429, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 0 dataloader workers
Logging results to runs\detect\train16
Starting training for 10 epochs...
Closing dataloader mosaicEpoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/10         0G      1.486      1.703       1.21         41        640: 100%|██████████| 313/313 [40:38<00:00,  7.79s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [14:18<00:00,  5.47s/it]all       5000      25502      0.915      0.512      0.574      0.339Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/10         0G      1.419      1.107      1.178         20        640: 100%|██████████| 313/313 [40:11<00:00,  7.70s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [13:28<00:00,  5.15s/it]all       5000      25502      0.915      0.527      0.586      0.348Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/10         0G        1.4     0.9633      1.174         45        640: 100%|██████████| 313/313 [39:57<00:00,  7.66s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [13:56<00:00,  5.33s/it]all       5000      25502      0.914        0.5      0.564      0.337Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/10         0G      1.369     0.8802      1.165         44        640: 100%|██████████| 313/313 [40:57<00:00,  7.85s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [13:54<00:00,  5.32s/it]all       5000      25502       0.93      0.546      0.603      0.369Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/10         0G       1.34      0.817      1.147         41        640: 100%|██████████| 313/313 [40:50<00:00,  7.83s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [13:59<00:00,  5.35s/it]all       5000      25502      0.938      0.556      0.615      0.388Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/10         0G      1.317     0.7701      1.134         34        640: 100%|██████████| 313/313 [40:18<00:00,  7.73s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [13:37<00:00,  5.20s/it]all       5000      25502      0.935      0.564       0.62      0.392Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/10         0G      1.291     0.7333      1.118         14        640: 100%|██████████| 313/313 [40:34<00:00,  7.78s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [13:41<00:00,  5.23s/it]all       5000      25502      0.946      0.573      0.629      0.395Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/10         0G      1.271     0.6964      1.108         45        640: 100%|██████████| 313/313 [20:10<00:00,  3.87s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [06:04<00:00,  2.32s/it]all       5000      25502       0.95      0.584      0.636       0.41Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/10         0G      1.243     0.6622      1.094         39        640: 100%|██████████| 313/313 [14:33<00:00,  2.79s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [06:08<00:00,  2.35s/it]all       5000      25502       0.95      0.591       0.64      0.421Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/10         0G      1.221     0.6353      1.088         22        640: 100%|██████████| 313/313 [14:36<00:00,  2.80s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [06:08<00:00,  2.35s/it]all       5000      25502      0.954      0.595      0.644      0.42910 epochs completed in 7.472 hours.
Optimizer stripped from runs\detect\train16\weights\last.pt, 6.2MB
Optimizer stripped from runs\detect\train16\weights\best.pt, 6.2MBValidating runs\detect\train16\weights\best.pt...
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)
Model summary (fused): 168 layers, 3,006,233 parameters, 0 gradients, 8.1 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 157/157 [04:53<00:00,  1.87s/it]all       5000      25502      0.954      0.596      0.644      0.429helmet       4581      18966      0.953      0.904      0.966      0.649head        920       5785       0.91      0.883      0.936      0.621person        158        751          1          0     0.0307     0.0175
Speed: 1.2ms preprocess, 50.8ms inference, 0.0ms loss, 0.3ms postprocess per image
Results saved to runs\detect\train16
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)
Model summary (fused): 168 layers, 3,006,233 parameters, 0 gradients, 8.1 GFLOPs
val: Scanning D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main\data\labels.cache... 5000 images, 0 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00<?, ?it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 313/313 [04:25<00:00,  1.18it/s]all       5000      25502      0.954      0.596      0.644      0.429helmet       4581      18966      0.953      0.904      0.966      0.649head        920       5785       0.91      0.883      0.936      0.621person        158        751          1          0     0.0307     0.0175
Speed: 1.2ms preprocess, 45.4ms inference, 0.0ms loss, 0.3ms postprocess per image
Results saved to runs\detect\train162
Ultralytics 8.3.49 🚀 Python-3.12.7 torch-2.5.0 CPU (12th Gen Intel Core(TM) i7-12700)PyTorch: starting from 'runs\detect\train16\weights\best.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 7, 8400) (6.0 MB)ONNX: starting export with onnx 1.17.0 opset 19...
ONNX: slimming with onnxslim 0.1.43...
ONNX: export success ✅ 1.0s, saved as 'runs\detect\train16\weights\best.onnx' (11.7 MB)Export complete (1.1s)
Results saved to D:\zsp\works\temp\20241119-zsp-helmet\Safety-Helmet-Detection-main\runs\detect\train16\weights
Predict:         yolo predict task=detect model=runs\detect\train16\weights\best.onnx imgsz=640
Validate:        yolo val task=detect model=runs\detect\train16\weights\best.onnx imgsz=640 data=data.yaml
Visualize:       https://netron.app

四.过程中可能遇到的问题

       我记得我遇到了onnx没有安装,用我之前文章里面的命令安装就行了。

#激活(使用)环境
conda activate myenv#安装 python 需要的包  
conda install onnx

    一般的报错,都能解决的,看日志,想办法

关键字:68design_设计手机界面的网站_乐事薯片软文推广_网络营销知名企业

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: