当前位置: 首页> 教育> 就业 > 基于python的BP神经网络红酒品质分类预测模型

基于python的BP神经网络红酒品质分类预测模型

时间:2025/7/16 5:10:27来源:https://blog.csdn.net/m0_65963495/article/details/140702644 浏览次数:0次

1 导入必要的库

import pandas as pd  
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import LabelEncoder  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense  
from tensorflow.keras.callbacks import EarlyStopping  
from sklearn.metrics import classification_report, confusion_matrix
# 忽略Matplotlib的警告(可选)  
import warnings  
warnings.filterwarnings("ignore") 
# 设置中文显示和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

2 数据加载与预处理

# 读取数据  
df = pd.read_csv('train.csv')  # 处理缺失值(这里假设我们删除含有缺失值的行)  
df.dropna(inplace=True)  # 处理重复值(这里选择删除重复的行)  
df.drop_duplicates(inplace=True)  # 将'wine types'列的文本转换为数值  
df['wine types'] = df['wine types'].map({'red': 1, 'white': 2})    
# 假设'quality'是我们要预测的标签  
X = df.drop('quality', axis=1)  
y = df['quality']

3 数据探索

# 选择绘制特征数据的折线图
X_columns_to_plot = X.columnsdf_plot = df[X_columns_to_plot]  df_plot.plot(subplots=True, figsize=(15, 15))  
plt.tight_layout()  
plt.show()

图 3-1

4 BP神经网络模型构建

import tensorflow as tf  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import StandardScaler  # 分离特征和标签  
X = df.drop('quality', axis=1)  
y = df['quality']  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 特征缩放  
scaler = StandardScaler()  
X_train_scaled = scaler.fit_transform(X_train)  
X_test_scaled = scaler.transform(X_test)  # 构建模型  
model = Sequential([  Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],)),  Dense(32, activation='relu'),  Dense(10, activation='softmax')  # 假设有10个类别,根据实际情况调整  
])  # 编译模型  
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])  # 训练模型  
history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.2, verbose=1)

图 4-1

5 训练评估可视化

# 绘制训练和验证的准确率与损失  
plt.figure(figsize=(12, 6))  
plt.subplot(1, 2, 1)  
plt.plot(history.history['accuracy'], color='#B0D5DF',label='Training Accuracy')  
plt.plot(history.history['val_accuracy'],  color='#1BA784',label='Validation Accuracy')  
plt.title('Training and Validation Accuracy')  
plt.legend()  plt.subplot(1, 2, 2)  
plt.plot(history.history['loss'],  color='#D11A2D',label='Training Loss')  
plt.plot(history.history['val_loss'], color='#87723E', label='Validation Loss')  
plt.title('Training and Validation Loss')  
plt.legend()  
plt.show()

图 5-1 过拟合

        成功过拟合了,其实早有预料,我手里的数据集都挺顽固的,训练效果都不好。

6 正则化

        这里采用L2正则化

import tensorflow as tf  
from tensorflow.keras.models import Sequential  
from tensorflow.keras.layers import Dense 
from tensorflow.keras.regularizers import l2  
from sklearn.model_selection import train_test_split  
from sklearn.preprocessing import StandardScaler  # 分离特征和标签  
X = df.drop('quality', axis=1)  
y = df['quality']  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 特征缩放  
scaler = StandardScaler()  
X_train_scaled = scaler.fit_transform(X_train)  
X_test_scaled = scaler.transform(X_test)  # 构建模型,添加L2正则化  
model = Sequential([    Dense(64, activation='relu', input_shape=(X_train_scaled.shape[1],), kernel_regularizer=l2(0.01)),  # 对第一个Dense层的权重添加L2正则化  Dense(64, activation='relu', kernel_regularizer=l2(0.01)),  # 对第二个Dense层的权重也添加L2正则化  Dense(10, activation='softmax')  # 输出层,假设是多分类问题  
])  # 编译模型  
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])  # 训练模型  
history = model.fit(X_train_scaled, y_train, epochs=100, validation_split=0.2, verbose=1)
# 绘制训练和验证的准确率与损失  
plt.figure(figsize=(12, 6))  
plt.subplot(1, 2, 1)  
plt.plot(history.history['accuracy'], color='#B0D5DF',label='Training Accuracy')  
plt.plot(history.history['val_accuracy'],  color='#1BA784',label='Validation Accuracy')  
plt.title('Training and Validation Accuracy')  
plt.legend()  plt.subplot(1, 2, 2)  
plt.plot(history.history['loss'],  color='#D11A2D',label='Training Loss')  
plt.plot(history.history['val_loss'], color='#87723E', label='Validation Loss')  
plt.title('Training and Validation Loss')  
plt.legend()  
plt.show()

图 6-1 

        这就不错了。

关键字:基于python的BP神经网络红酒品质分类预测模型

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

责任编辑: